26
Views
35
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Minimal Phenotype of Mice Homozygous for a Null Mutation in the Forkhead/Winged Helix Gene, Mf2

, &
Pages 1419-1425 | Received 11 Nov 1999, Accepted 17 Nov 1999, Published online: 28 Mar 2023

REFERENCES

  • Ang, S. L., and Rossant, J.. 1994. HNF-3 beta is essential for node and notochord formation in mouse development. Cell 78:561–574
  • Ang, S. L., Wierda, A., Wong, D., Stevens, K. A., Cascio, S., Rossant, J., and Zaret, K. S.. 1993. The formation and maintenance of the definitive endoderm lineage in the mouse: involvement of HNF3/forkhead proteins. Development 119:1301–1315
  • Bi, W., Deng, J. M., Zhang, Z., Behringer, R. R., and de Crombrugghe, B.. 1999. Sox9 is required for cartilage formation. Nat. Genet. 22:85–89
  • Chen, J., Knowles, H. J., Hebert, J. L., and Hackett, B. P.. 1998. Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left-right asymmetry. J. Clin. Investig. 102:1077–1082
  • Davies, J. A., and Bard, J. B.. 1998. The development of the kidney. Curr. Top. Dev. Biol. 39:245–301
  • Dou, C., Ye, X., Stewart, C., Lai, E., and Li, S. C.. 1997. TWH regulates the development of subsets of spinal cord neurons. Neuron 18:539–551
  • Dressler, G. R.. 1999. Kidney development branches out. Dev. Genet. 24:189–193
  • Dressler, G. R., Deutsch, U., Chowdhury, K., Nornes, H. O., and Gruss, P.. 1990. Pax2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109:787–795
  • Dudley, A. T., Godin, R. E., and Robertson, E. J.. 1999. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 13:1601–1613
  • Dudley, A. T., Lyons, K. M., and Robertson, E. J.. 1995. A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev. 9:2795–2807
  • Dunn, N. R., Winnier, G. E., Hargett, L. K., Schrick, J. J., Fogo, A. B., and Hogan, B. L. M.. 1997. Haploin sufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev. Biol. 188:235–247
  • Ernstsson, S., Betz, R., Lagercrantz, S., Larsson, C., Ericksson, S., Cederberg, A., Carlsson, P., Enerback. 1997. 1997. Cloning and characterization of freac-9 (FKHL171), a novel kidney-expressed human forkhead gene that maps to chromosome 1p32-p34. Genomics 46:78–85
  • Ernstsson, S., Pierrou, S., Hulander, M., Cederberg, A., Hellqvist, M., Carlsson, P., and Enerback, S.. 1996. Characterization of the human forkhead gene FREAC-4. Evidence for regulation by Wilms' tumor suppressor gene (WT-1) and p53. J. Biol. Chem. 271:21094–21099
  • Green, M. C.. 1968. Mechanism of the pleiotropic effects of the short-ear mutant gene in the mouse. J. Exp. Zool. 167:129–150
  • Gruneberg, H.. 1943. Congenital hydrocephalus in the mouse: a case of spurious pleiotropism. J. Genet. 45:1–21
  • Hatini, V., Huh, S. O., Herzlinger, D., Soares, V. C., and Lai, E.. 1996. Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged helix transcription factor BF-2. Genes Dev. 10:1467–1478
  • Hiemisch, H., Monaghan, A. P., Schutz, G., and Kaestner, K. H.. 1998. Expression of the mouse Fkh1/Mf1 and Mfh1 genes in late gestation embryos is restricted to mesoderm derivatives. Mech. Dev. 73:129–132
  • Hong, H. K., Lass, J. H., and Chakravarti, A.. 1999. Pleiotropic skeletal and ocular phenotypes of the mouse mutation congenital hydrocephalus (ch/Mf1) arise from a winged helix/forkhead transcription factor gene. Hum. Mol. Genet. 8:625–637
  • Iida, K., Koseki, H., Kakinuma, H., Kato, N., Mizutani-Koseki, Y., Ohuchi, H., Yoshioka, H., Noji, S., Kawamura, K., Kataoka, Y., Ueno, F., Taniguchi, M., Yoshida, N., Sugiyama, T., and Miura, N.. 1997. Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124:4627–4638
  • Kaestner, K. H., Bleckmann, S. C., Monaghan, A. P., Schlondorff, J., Mincheva, A., Lichter, P., and Schutz, G.. 1996. Clustered arrangement of winged helix genes fkh-6 and MFH-1: possible implications for mesoderm development. Development 122:1751–1758
  • Kaestner, K. H., Schutz, G., and Monaghan, A. P.. 1996. Expression of the winged helix genes fkh-4 and fkh-5 defines domains in the central nervous system. Mech. Dev. 55:221–230
  • Kaestner, K. H., Silberg, D. G., Traber, P. G., and Schutz, G.. 1997. The mesenchymal winged helix transcription factor Fkh6 is required for the control of gastrointestinal proliferation and differentiation. Genes Dev. 11:1583–1595
  • Kaufmann, E., and Knochel, W.. 1996. Five years on the wings of fork head. Mech. Dev. 57:3–20
  • Kidson, S. H., Kume, T., Deng, K., Winfrey, V., and Hogan, B. L. M.. 1999. The forkhead/winged-helix gene, Mf1, is necessary for the normal development of the cornea and formation of the anterior chamber in the mouse eye. Dev. Biol. 211:306–322
  • Kume, T., Deng, K. Y., Winfrey, V., Gould, D. B., Walter, M. A., and Hogan, B. L. M.. 1998. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 93:985–996
  • Labosky, P. A., Winnier, G. E., Jetton, T. L., Hargett, L., Ryan, A. K., Rosenfeld, M. G., Parlow, A. F., and Hogan, B. L. M.. 1997. The winged helix gene, Mf3, is required for normal development of the diencephalon and midbrain, postnatal growth and the milk-ejection reflex. Development 124:1263–1274
  • Lechner, M. S., and Dressler, G. R.. 1997. The molecular basis of embryonic kidney development. Mech. Dev. 62:105–120
  • Luo, G., Hofmann, C., Bronckers, A. L., Sohocki, M., Bradley, A., and Karsenty, G.. 1995. BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev. 9:2808–2820
  • Mackie, G. G., and Stephens, F. D.. 1975. Duplex kidneys: a correlation of renal dysplasia with position of the ureteral orifice. J. Urol. 114:274–280
  • Miura, N., Wanaka, A., Tohyama, M., and Tanaka, K.. 1993. MFH-1, a new member of the fork head domain family, is expressed in developing mesenchyme. FEBS Lett. 326:171–176
  • Overdier, D. G., Ye, H., Peterson, R. S., Clevidence, D. E., and Costa, R. H.. 1997. The winged helix transcriptional activator HFH-3 is expressed in the distal tubules of embryonic and adult mouse kidney. J. Biol. Chem. 272:13725–13730
  • Pelletier, G. J., Brody, S. L., Liapis, H., White, R. A., and Hackett, B. P.. 1998. A human forkhead/winged-helix transcription factor expressed in developing pulmonary and renal epithelium. Am. J. Physiol. 274:L351–L359
  • Pope, J. C. T., Brock, J. W.3rd, Adams, M. C., Stephens, F. D., and Ichikawa, I.. 1999. How they begin and how they end: classic and new theories for the development and deterioration of congenital anomalies of the kidney and urinary tract, CAKUT. J. Am. Soc. Nephrol. 10:2018–2028
  • Rosenthal, A.. 1999. The GDNF protein family: gene ablation studies reveal what they really do and how. Neuron 22:201–203
  • Sariola, H., and Sainio, K.. 1997. The tip-top branching ureter. Curr. Opin. Cell Biol. 9:877–884
  • Sasaki, H., and Hogan, B. L. M.. 1993. Differential expression of multiple fork head related genes during gastrulation and axial pattern formation in the mouse embryo. Development 118:47–59
  • Saxen, L.. 1987. Organogenesis of the kidney. Cambridge University Press, Cambridge, England
  • Stephens, F. D., and Huston, J. M.. 1996. Congenital anomalies of the urinary and genital tracts. ISIS Medical Media, Oxford, England
  • Swiderski, R. E., Reiter, R. S., Nishimura, D. Y., Alward, W. L., Kalenak, J. W., Searby, C. S., Stone, E. M., Sheffield, V. C., and Lin, J. J.. 1999. Expression of the Mf1 gene in developing mouse hearts: implication in the development of human congenital heart defects. Dev. Dyn. 216:16–27
  • Wakamiya, M., Lindsay, E. A., Rivera-Perez, J. A., Baldini, A., and Behringer, R. R.. 1998. Functional analysis of Gscl in the pathogenesis of the DiGeorge and velocardiofacial syndromes. Hum. Mol. Genet. 7:1835–1840
  • Wehr, R., Mansouri, A., de Maeyer, T., and Gruss, P.. 1997. Fkh5-deficient mice show dysgenesis in the caudal midbrain and hypothalamic mammillary body. Development 124:4447–4456
  • Winnier, G. E., Hargett, L., and Hogan, B. L. M.. 1997. The winged helix transcription factor MFH1 is required for proliferation and patterning of paraxial mesoderm in the mouse embryo. Genes Dev. 11:926–940
  • Winnier, G. E., Kume, T., Deng, K., Rogers, R., Bundy, J., Raines, C., Walter, M. A., Hogan, B. L. M., and Conway, S. J.. 1999. Roles for the winged helix transcription factors MF1 and MFH1 in cardiovascular development revealed by nonallelic noncomplementation of null alleles. Dev. Biol. 213:418–431
  • Wu, S. C., Grindley, J., Winnier, G. E., Hargett, L., and Hogan, B. L. M.. 1998. Mouse mesenchyme forkhead 2 (Mf2): expression, DNA binding and induction by sonic hedgehog during somitogenesis. Mech. Dev. 70:3–13
  • Xuan, S., Baptista, C. A., Balas, G., Tao, W., Soares, V. C., and Lai, E.. 1995. Winged helix transcription factor BF-1 is essential for the development of the cerebral hemispheres. Neuron 14:1141–1152

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.