51
Views
230
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Tissue-Specific Coactivator of Steroid Receptors, Identified in a Functional Genetic Screen

, &
Pages 2411-2422 | Received 01 Nov 1999, Accepted 03 Jan 2000, Published online: 27 Mar 2023

REFERENCES

  • Bannister, A. J., and Kouzarides, T.. 1996. The CBP co-activator is a histone acetyltransferase. Nature 384:641–643
  • Beato, M., Herrlich, P., and Schutz, G.. 1995. Steroid hormone receptors: many actors in search of a plot. Cell 83:851–857
  • Boonyaratanakornkit, V., Melvin, V., Prendergast, P., Altmann, M., Ronfani, L., Bianchi, M. E., Taraseviciene, L., Nordeen, S. K., Allegretto, E. A., and Edwards, D. P.. 1998. High-mobility-group chromatin proteins 1 and 2 functionally interact with steroid hormone receptors to enhance their DNA binding in vitro and transcriptional activity in mammalian cells. Mol. Cell. Biol. 18:4471–4487
  • Boss, O., Bachman, E., Vidal-Puig, A., Zhang, C. Y., Peroni, O., and Lowell, B. B.. 1999. Role of the beta(3)-adrenergic receptor and/or a putative beta(4)-adrenergic receptor on the expression of uncoupling proteins and peroxisome proliferator-activated receptor-gamma coactivator-1. Biochem. Biophys. Res. Commun. 261:870–876
  • Boyer, T. G., Martin, M. E., Lees, E., Ricciardi, R. P., and Berk, A. J.. 1999. Mammalian Srb/mediator complex is targeted by adenovirus E1A protein. Nature 399:276–279
  • Cairns, B. R., Levinson, R. S., Yamamoto, K. R., and Kornberg, R. D.. 1996. Essential role of Swp73p in the function of yeast Swi/Snf complex. Genes Dev. 10:2131–2144
  • Chawla, S., Hardingham, G. E., Quinn, D. R., and Bading, H.. 1998. CBP: a signal-regulated transcriptional coactivator controlled by nuclear calcium and CaM kinase IV. Science 281:1505–1509
  • Chen, H., Lin, R. J., Schiltz, R. L., Chakravarti, D., Nash, A., Nagy, L., Privalsky, M. L., Nakatani, Y., and Evans, R. M.. 1997. Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90:569–580
  • Chen, J. D., and Evans, R. M.. 1995. A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature 377:454–457
  • Corden, J. L., and Patturajan, M.. 1997. A CTD function linking transcription to splicing. Trends Biochem. Sci. 22:413–416
  • Dittmar, K. D., Demady, D. R., Stancato, L. F., Krishna, P., and Pratt, W. B.. 1997. Folding of the glucocorticoid receptor by the heat shock protein (hsp) 90-based chaperone machinery. The role of p23 is to stabilize receptor.hsp90 heterocomplexes formed by hsp90.p60.hsp70. J. Biol. Chem. 272:21213–21220
  • Fields, S., and Song, O.. 1989. A novel genetic system to detect protein-protein interactions. Nature 340:245–246
  • Freedman, L. P.. 1999. Increasing the complexity of coactivation in nuclear receptor signaling. Cell 97:5–8
  • Fryer, C. J., and Archer, T. K.. 1998. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393:88–91
  • Gilbert, D. M., Heery, D. M., Losson, R., Chambon, P., and Lemoine, Y.. 1993. Estradiol-inducible squelching and cell growth arrest by a chimeric VP16-estrogen receptor expressed in Saccharomyces cerevisiae: suppression by an allele of PDR1. Mol. Cell. Biol. 13:462–472
  • Gill, G., and Ptashne, M.. 1988. Negative effect of the transcriptional activator GAL4. Nature 334:721–724
  • Godowski, P. J., Picard, D., and Yamamoto, K. R.. 1988. Signal transduction and transcriptional regulation by glucocorticoid receptor-LexA fusion proteins. Science 241:812–816
  • Godowski, P. J., Rusconi, S., Miesfeld, R., and Yamamoto, K. R.. 1987. Glucocorticoid receptor mutants that are constitutive activators of transcriptional enhancement. Nature 325:365–368 (Erratum 326:105.)
  • Guido, E. C., Delorme, E. O., Clemm, D. L., Stein, R. B., Rosen, J., and Miner, J. N.. 1996. Determinants of promoter-specific activity by glucocorticoid receptor. Mol. Endocrinol. 10:1178–1190
  • Heery, D. M., Kalkhoven, E., Hoare, S., and Parker, M. G.. 1997. A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736
  • Heinzel, T., Lavinsky, R. M., Mullen, T. M., Soderstrom, M., Laherty, C. D., Torchia, J., Yang, W. M., Brard, G., Ngo, S. D., Davie, J. R., Seto, E., Eisenman, R. N., Rose, D. W., Glass, C. K., and Rosenfeld, M. G.. 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48
  • Hong, H., Darimont, B. D., Ma, H., Yang, L., Yamamoto, K. R., and Stallcup, M. R.. 1999. An additional region of coactivator GRIP1 required for interaction with the hormone-binding domains of a subset of nuclear receptors. J. Biol. Chem. 274:3496–3502
  • Horlein, A. J., Naar, A. M., Heinzel, T., Torchia, J., Gloss, B., Kurokawa, R., Ryan, A., Kamei, Y., Soderstrom, M., Glass, C. K. et al. 1995. Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor corepressor. Nature 377:397–404
  • Imhof, M. O., and McDonnell, D. P.. 1996. Yeast RSP5 and its human homolog hRPF1 potentiate hormone-dependent activation of transcription by human progesterone and glucocorticoid receptors. Mol. Cell. Biol. 16:2594–2605
  • Iniguez-Lluhi, J. A., Lou, D. Y., and Yamamoto, K. R.. 1997. Three amino acid substitutions selectively disrupt the activation but not the repression function of the glucocorticoid receptor N terminus. J. Biol. Chem. 272:4149–4156
  • Jantzen, H. M., Strahle, U., Gloss, B., Stewart, F., Schmid, W., Boshart, M., Miksicek, R., and Schutz, G.. 1987. Cooperativity of glucocorticoid response elements located far upstream of the tyrosine aminotransferase gene. Cell 49:29–38
  • Kalkhoven, E., Valentine, J. E., Heery, D. M., and Parker, M. G.. 1998. Isoforms of steroid receptor co-activator 1 differ in their ability to potentiate transcription by the oestrogen receptor. EMBO J. 17:232–243
  • Kingston, R. E.. 1999. A shared but complex bridge. Nature 399:199–200
  • Knoblauch, R., and Garabedian, M. J.. 1999. Role for Hsp90-associated cochaperone p23 in estrogen receptor signal transduction. Mol. Cell. Biol. 19:3748–3759
  • Kobayashi, N., Horn, P. J., Sullivan, S. M., Triezenberg, S. J., Boyer, T. G., and Berk, A. J.. 1998. DA-complex assembly activity required for VP16C transcriptional activation. Mol. Cell. Biol. 18:4023–4031
  • Kralli, A., Bohen, S. P., and Yamamoto, K. R.. 1995. LEM1, an ATP-binding-cassette transporter, selectively modulates the biological potency of steroid hormones. Proc. Natl. Acad. Sci. USA 92:4701–4705
  • Kralli, A., and Yamamoto, K. R.. 1996. An FK506-sensitive transporter selectively decreases intracellular levels and potency of steroid hormones. J. Biol. Chem. 271:17152–17156
  • Lahue, E. E., Smith, A. V., and Orr-Weaver, T. L.. 1991. A novel cyclin gene from Drosophila complements CLN function in yeast. Genes Dev. 5:2166–2175
  • Lanz, R. B., McKenna, N. J., Onate, S. A., Albrecht, U., Wong, J., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1999. A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97:17–27
  • Lavinsky, R. M., Jepsen, K., Heinzel, T., Torchia, J., Mullen, T. M., Schiff, R., Del-Rio, A. L., Ricote, M., Ngo, S., Gemsch, J., Hilsenbeck, S. G., Osborne, C. K., Glass, C. K., Rosenfeld, M. G., and Rose, D. W.. 1998. Diverse signaling pathways modulate nuclear receptor recruitment of N- CoR and SMRT complexes. Proc. Natl. Acad. Sci. USA 95:2920–2925
  • Lee, J. W., Choi, H. S., Gyuris, J., Brent, R., and Moore, D. D.. 1995. Two classes of proteins dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9:243–254
  • Lee, M. G., and Nurse, P.. 1987. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327:31–35
  • Leers, J., Treuter, E., and Gustafsson, J. A.. 1998. Mechanistic principles in NR box-dependent interaction between nuclear hormone receptors and the coactivator TIF2. Mol. Cell. Biol. 18:6001–6013
  • Leopold, P., and O'Farrell, P. H.. 1991. An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell 66:1207–1216
  • Lew, D. J., Dulic, V., and Reed, S. I.. 1991. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66:1197–1206
  • Liu, Y. Z., Chrivia, J. C., and Latchman, D. S.. 1998. Nerve growth factor upregulates the transcriptional activity of CBP through activation of the p42/p44(MAPK) cascade. J. Biol. Chem. 273:32400–32407
  • Lupas, A., Van Dyke, M., and Stock, J.. 1991. Predicting coiled coils from protein sequences. Science 252:1162–1164
  • Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P. et al. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839
  • Maser, P., Sutterlin, C., Kralli, A., and Kaminsky, R.. 1999. A nucleoside transporter from Trypanosoma brucei involved in drug resistance. Science 285:242–244
  • McDonnell, D. P., Vegeto, E., and O'Malley, B. W.. 1992. Identification of a negative regulatory function for steroid receptors. Proc. Natl. Acad. Sci. USA 89:10563–10567
  • Metzger, D., White, J. H., and Chambon, P.. 1988. The human oestrogen receptor functions in yeast. Nature 334:31–36
  • Moras, D., and Gronemeyer, H.. 1998. The nuclear receptor ligand-binding domain: structure and function. Curr. Opin. Cell Biol. 10:384–391
  • Moyer, M. L., Borror, K. C., Bona, B. J., DeFranco, D. B., and Nordeen, S. K.. 1993. Modulation of cell signaling pathways can enhance or impair glucocorticoid-induced gene expression without altering the state of receptor phosphorylation. J. Biol. Chem. 268:22933–22940
  • Muchardt, C., and Yaniv, M.. 1993. A human homologue of Saccharomyces cerevisiae SNF2/SWI2 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12:4279–4290
  • Naar, A. M., Beaurang, P. A., Zhou, S., Abraham, S., Solomon, W., and Tjian, R.. 1999. Composite co-activator ARC mediates chromatin-directed transcriptional activation. Nature 398:828–832
  • Nagy, L., Kao, H. Y., Chakravarti, D., Lin, R. J., Hassig, C. A., Ayer, D. E., Schreiber, S. L., and Evans, R. M.. 1997. Nuclear receptor repression mediated by a complex containing SMRT, mSin3A, and histone deacetylase. Cell 89:373–380
  • Nakajima, T., Fukamizu, A., Takahashi, J., Gage, F. H., Fisher, T., Blenis, J., and Montminy, M. R.. 1996. The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell 86:465–474
  • Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K., and Milburn, M. V.. 1998. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-gamma. Nature 395:137–143
  • Nordeen, S. K., Bona, B. J., and Moyer, M. L.. 1993. Latent agonist activity of the steroid antagonist, RU486, is unmasked in cells treated with activators of protein kinase A. Mol. Endocrinol. 7:731–742
  • Nordeen, S. K., Moyer, M. L., and Bona, B. J.. 1994. The coupling of multiple signal transduction pathways with steroid response mechanisms. Endocrinology 134:1723–1732
  • Ogryzko, V. V., Schiltz, R. L., Russanova, V., Howard, B. H., and Nakatani, Y.. 1996. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87:953–959
  • Onate, S. A., Prendergast, P., Wagner, J. P., Nissen, M., Reeves, R., Pettijohn, D. E., and Edwards, D. P.. 1994. The DNA-bending protein HMG-1 enhances progesterone receptor binding to its target DNA sequences. Mol. Cell. Biol. 14:3376–3391
  • Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1995. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270:1354–1357
  • Pearce, D., and Yamamoto, K. R.. 1993. Mineralocorticoid and glucocorticoid receptor activities distinguished by nonreceptor factors at a composite response element. Science 259:1161–1165
  • Powers, C. A., Mathur, M., Raaka, B. M., Ron, D., and Samuels, H. H.. 1998. TLS (translocated-in-liposarcoma) is a high-affinity interactor for steroid, thyroid hormone, and retinoid receptors. Mol. Endocrinol. 12:4–18
  • Pratt, W. B., and Toft, D. O.. 1997. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocrinol. Rev. 18:306–360
  • Puigserver, P., Wu, Z., Park, C. W., Graves, R., Wright, M., and Spiegelman, B. M.. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839
  • Ribeiro, R. C. J., Cavalieri, R. R., Lomri, N., Rahmaoui, C. M., Baxter, J. D., and Scharschmidt, B. F.. 1996. Thyroid hormone export regulates cellular hormone content and response. J. Biol. Chem. 271:17147–17151
  • Rothstein, R. J.. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211
  • Schena, M., and Yamamoto, K. R.. 1988. Mammalian glucocorticoid receptor derivatives enhance transcription in yeast. Science 241:965–967
  • Schild, D., Brake, A. J., Kiefer, M. C., Young, D., and Barr, P. J.. 1990. Cloning of three human multifunctional de novo purine biosynthetic genes by functional complementation of yeast mutations. Proc. Natl. Acad. Sci. USA 87:2916–2920
  • Sikorski, R. S., and Hieter, P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27
  • Spencer, T. E., Jenster, G., Burcin, M. M., Allis, C. D., Zhou, J., Mizzen, C. A., McKenna, N. J., Onate, S. A., Tsai, S. Y., Tsai, M. J., and O'Malley, B. W.. 1997. Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389:194–198
  • Torchia, J., Glass, C., and Rosenfeld, M. G.. 1998. Co-activators and co-repressors in the integration of transcriptional responses. Curr. Opin. Cell Biol. 10:373–383
  • Torchia, J., Rose, D. W., Inostroza, J., Kamei, Y., Westin, S., Glass, C. K., and Rosenfeld, M. G.. 1997. The transcriptional co-activator p/CIP binds CBP and mediates nuclear-receptor function. Nature 387:677–684
  • Utley, R. T., Ikeda, K., Grant, P. A., Cote, J., Steger, D. J., Eberharter, A., John, S., and Workman, J. L.. 1998. Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature 394:498–502
  • Webb, P., Lopez, G. N., Uht, R. M., and Kushner, P. J.. 1995. Tamoxifen activation of the estrogen receptor/AP-1 pathway: potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol. Endocrinol. 9:443–456
  • Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R. C., and Spiegelman, B. M.. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124
  • Xiong, Y., Connolly, T., Futcher, B., and Beach, D.. 1991. Human D-type cyclin. Cell 65:691–699
  • Xu, L., Glass, C. K., and Rosenfeld, M. G.. 1999. Coactivator and corepressor complexes in nuclear receptor function. Curr. Opin. Genet. Dev. 9:140–147
  • Xu, Q., and Reed, J. C.. 1998. Bax inhibitor-1, a mammalian apoptosis suppressor identified by functional screening in yeast. Mol. Cell 1:337–346
  • Yang, X. J., Ogryzko, V. V., Nishikawa, J., Howard, B. H., and Nakatani, Y.. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324
  • Yoshinaga, S. K., Peterson, C. L., Herskowitz, I., and Yamamoto, K. R.. 1992. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258:1598–1604
  • Yuryev, A., Patturajan, M., Litingtung, Y., Joshi, R. V., Gentile, C., Gebara, M., and Corden, J. L.. 1996. The C-terminal domain of the largest subunit of RNA polymerase II interacts with a novel set of serine/arginine-rich proteins. Proc. Natl. Acad. Sci. USA 93:6975–6980
  • Zhang, C. C., Krieg, S., and Shapiro, D. J.. 1999. HMG-1 stimulates estrogen response element binding by estrogen receptor from stably transfected HeLa cells. Mol. Endocrinol. 13:632–643

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.