12
Views
89
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Presence of a Member of the Mitochondrial Carrier Family in Hydrogenosomes: Conservation of Membrane-Targeting Pathways between Hydrogenosomes and Mitochondria

, , , , , , & show all
Pages 2488-2497 | Received 25 Oct 1999, Accepted 05 Jan 2000, Published online: 27 Mar 2023

REFERENCES

  • Adam, A., Endres, M., Sirrenberg, C., Lottspeich, F., Neupert, W., and Brunner, M.. 1999. Tim9, a new component of the TIM22.54 translocase in mitochondria. EMBO J. 18:313–319
  • Andersson, S. G. E., and Kurland, C. G.. 1999. Origins of mitochondria and hydrogenosomes. Curr. Opin. Microbiol. 2:535–541
  • Andersson, S. G. E., Zomorodipour, A., Andersson, J. P., Sicheritz-Ponten, T., Alsmark, U. C. M., Podowski, R. M., Naslund, A. K., Eriksson, A.-S., Winkler, H. H., and Kurland, C. G.. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140
  • Bradley, P. J., Lahti, C. J., Plümper, E., and Johnson, P. J.. 1997. Targeting and translocation of proteins into the hydrogenosome of the protist Trichomonas: similarities with mitochondrial protein import. EMBO J. 16:3484–3493
  • Bui, E. T. N., Bradley, P. J., and Johnson, P. J.. 1996. A common evolutionary origin for mitochondria and hydrogenosomes. Proc. Natl. Acad. Sci. USA 93:9651–9656
  • Cavalier-Smith, T.. 1987. The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann. N. Y. Acad. Sci. 503:55–71
  • Clark, C. G., and Roger, A. J.. 1995. Direct evidence for secondary loss of mitochondria in Entamoeba histolytica. Proc. Natl. Acad. Sci. USA 92:6518–6521
  • Delgadillo, M. G., Liston, D. R., Niazi, K., and Johnson, P. J.. 1997. Transient and selectable transformation of the parasitic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 94:4716–4720
  • Felsenstein, J.. 1993. PHYLIP—phylogeny inference package, version 3.57c. University of Washington, Seattle
  • Fujiki, Y., Hubbard, A. L., Fowler, S., and Lazarow, P. B.. 1982. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol. 93:97–102
  • Germot, A., Philippe, H., and Le Guyader, H.. 1996. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes. Proc. Natl. Acad. Sci. USA 93:14614–14617
  • Glaser, E., Sjöling, S., Tanudji, M., and Whelan, J.. 1998. Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Mol. Biol. 38:311–338
  • Glick, B. S., and Pon, L. A.. 1995. Isolation of highly purified mitochondria from Saccharomyces cerevisiae. Methods Enzymol. 260:213–223
  • Gray, M. W., Burger, G., and Lang, B. F.. 1999. Mitochondrial evolution. Science 283:1476–1481
  • Hausler, T., Stierhof, Y. D., Blattner, J., and Clayton, C.. 1997. Conservation of mitochondrial targeting sequence function in mitochondrial and hydrogenosomal proteins from the early-branching eukaryotes Crithidia, Trypanosoma and Trichomonas. Eur. J. Cell Biol. 73:240–251
  • Horner, D. S., Hirt, R. P., Kilvington, S., Lloyd, D., and Embley, T. M.. 1996. Molecular data suggest an early acquisition of the mitochondrion endosymbiont. Proc. R. Soc. Lond. Series B. Biol. Sci. 263:1053–1059
  • Johnson, P. J., Bradley, P. J., and Lahti, C. J.. 1995. Cell biology of trichomonads: protein targeting to the hydrogenosome Molecular approaches to parasitology. Boothroyd, J. C., and Komuniecki, R. 399–411 Wiley-Liss, Inc., New York, N.Y
  • Johnson, P. J., d'Oliveira, C. E., Gorrell, T. E., and Müller, M.. 1990. Molecular analysis of the hydrogenosomal ferredoxin of the anaerobic protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 87:6097–6101
  • Kerscher, O., Holder, J., Srinivasan, M., Leung, R. S., and Jensen, R. E.. 1997. The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell Biol. 139:1663–1675
  • Klingenberg, M.. The enzymes of biological membranes, vol. 3. Membrane transport, p. 383–438 Plenum Publishing Corp., New York, N.Y
  • Koehler, C. M., Jarosch, E., Tokatlidis, K., Schmid, K., Schweyen, R. J., and Schatz, G.. 1998. 1976. Import of mitochondrial carriers mediated by essential proteins of the intermembrane space. Science 279:369–373
  • Koehler, C. M., Merchant, S., Oppliger, W., Schmid, K., Jarosch, E., Dolfini, L., Junne, T., Schatz, G., and Tokatlidis, K.. 1998. Tim9p, an essential partner subunit of Tim10p for the import of mitochondrial carrier proteins. EMBO J. 17:6477–6486
  • Kuan, J., Saier, M. H.Jr.. 1993. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit. Rev. Biochem. Mol. Biol. 28:209–233
  • Lahti, C. J., d'Oliveira, C. E., and Johnson, P. J.. 1992. β-succinyl CoA synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino-terminal sequence that resembles mitochondrial presequences. J. Bacteriol. 174:6822–6830
  • Lahti, C. J., and Johnson, P. J.. 1991. Trichomonas vaginalis hydrogenosomal proteins are synthesized on free polyribosomes and may undergo processing upon maturation. Mol. Biochem. Parasitol. 46:307–310
  • Leuenberger, D., Bally, N. A., Schatz, G., and Koehler, C. M.. 1999. Different import pathways through the mitochondrial intermembrane space for inner membrane proteins. EMBO J. 18:4816–4822
  • Liston, D. R., and Johnson, P. J.. 1999. Analysis of a ubiquitous promoter element in a primitive eukaryote: early evolution of the initiator element. Mol. Cell. Biol. 19:2380–2388
  • Liu, X. Q., Freeman, K. B., and Shore, G. C.. 1990. An amino-terminal signal sequence abrogates the intrinsic membrane-targeting information of mitochondrial uncoupling protein. J. Biol. Chem. 265:9–12
  • Martin, W., and Müller, M.. 1998. The hydrogen hypothesis for the first eukaryote. Nature 392:37–41
  • Mozo, T., Fischer, K., Flugge, U. I., and Schmitz, U. K.. 1995. The N-terminal extension of the ADP/ATP translocator is not involved in targeting to plant mitochondria in vivo. Plant J. 7:1015–1020
  • Müller, M.. 1980. The hydrogenosome. The eukaryotic microbial cell. Gooday, G. W., Lloyd, D., and Trinci, A. P. J. Cambridge University Press, Cambridge, England
  • Müller, M.. 1993. The hydrogenosome. J. Gen. Microbiol. 139:2879–2889
  • Nelson, D. R., Felix, C. M., and Swanson, J. M.. 1998. Highly conserved charge-pair networks in the mitochondrial carrier family. J. Mol. Biol. 277:285–308
  • Nelson, D. R., Lawson, J. E., Klingenberg, M., and Douglas, M. G.. 1993. Site-directed mutagenesis of the yeast mitochondrial ADP/ATP translocator. Six arginines and one lysine are essential. J. Mol. Biol. 230:1159–1170
  • Neupert, W.. 1997. Protein import into mitochondria. Annu. Rev. Biochem. 66:863–917
  • Pfanner, N.. 1998. Mitochondrial import: crossing the aqueous intermembrane space. Curr. Biol. 8:R262–R265
  • Pfanner, N., Craig, E. A., and Hönlinger, A.. 1997. Mitochondrial preprotein translocase. Annu. Rev. Cell Dev. Biol. 13:25–51
  • Pfanner, N., Hoeben, P., Tropschug, M., and Neupert, W.. 1987. The carboxyl-terminal two-thirds of the ADP/ATP carrier polypeptide contains sufficient information to direct translocation into mitochondria. J. Biol. Chem. 262:14851–14854
  • Pfanner, N., and Neupert, W.. 1987. Distinct steps in the import of ADP/ATP carrier into mitochondria. J. Biol. Chem. 262:7528–7536
  • Plümper, E., Bradley, P. J., and Johnson, P. J.. 1998. Implications of protein import on the origin of hydrogenosomes. Protist 149:303–311
  • Roger, A. J., Clark, C. G., and Doolittle, W. F.. 1996. A possible mitochondrial gene in the early-branching amitochondriate protist Trichomonas vaginalis. Proc. Natl. Acad. Sci. USA 93:14618–14622
  • Roger, A. J., Svärd, S. G., Tovar, J., Clark, C. G., Smith, M. W., Gillin, F. D., and Sogin, M. L.. 1998. A mitochondrial-like chaperonin 60 gene in Giardia lamblia: evidence that diplomonads once harbored an endosymbiont related to the progenitor of mitochondria. Proc. Natl. Acad. Sci. USA 95:229–234
  • Ryan, M. T., and Pfanner, N.. 1998. The preprotein translocase of the mitochondrial outer membrane. Biol. Chem. 379:289–294
  • Saraste, M., and Walker, J. E.. 1982. Internal sequence repeats and the path of polypeptide in mitochondrial ADP/ATP translocase. FEBS Lett. 144:250–254
  • Sirrenberg, C., Endres, M., Fölsch, H., Stuart, R. A., Neupert, W., and Brunner, M.. 1998. Carrier protein import into mitochondria mediated by the intermembrane proteins Tim10/Mrs11 and Tim12/Mrs5. Nature 391:912–915
  • Smagula, C. S., and Douglas, M. G.. 1988. ADP-ATP carrier of Saccharomyces cerevisiae contains a mitochondrial import signal between amino acids 72 and 111. J. Cell. Biochem. 36:323–327
  • Sogin, M.. 1997. History assignment: when was the mitochondrion founded? Curr. Opin. Genet. Dev. 7:792–799
  • Swofford, D. L.. 1997. PAUP: phylogenetic analysis using parsimony, version 4.0. Sinauer Associates, Inc., Sunderland, Mass
  • Thompson, J. D., Higgins, D. G., and Gibson, T. J.. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673–4680
  • van der Giezen, M., Kiel, J. A., Sjollema, K. A., and Prins, R. A.. 1998. The hydrogenosomal malic enzyme from the anaerobic fungus Neocallimastix frontalis is targeted to mitochondria of the methylotrophic yeast Hansenula polymorpha. Curr. Genet. 33:131–135
  • Weber, F. E., Minestrini, G., Dyer, J. H., Werder, M., Boffelli, D., Compassi, S., Wehrli, E., Thomas, R. M., Schulthess, G., and Hauser, H.. 1997. Molecular cloning of a peroxisomal Ca2+-dependent member of the mitochondrial carrier superfamily. Proc. Natl. Acad. Sci. USA 94:8509–8514
  • Winning, B. M., Sarah, C. J., Purdue, P. E., Day, C. D., and Leaver, C. J.. 1992. The adenine nucleotide translocator of higher plants is synthesized as a large precursor that is processed upon import into mitochondria. Plant J. 2:763–773
  • Zara, V., Palmieri, F., Mahlke, K., and Pfanner, N.. 1992. The cleavable presequence is not essential for import and assembly of the phosphate carrier of mammalian mitochondria but enhances the specificity and efficiency of import. J. Biol. Chem. 267:12077–12081

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.