75
Views
206
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Cooperative Signals Governing ARF-Mdm2 Interaction and Nucleolar Localization of the Complex

, , , , , & show all
Pages 2517-2528 | Received 09 Nov 1999, Accepted 29 Dec 1999, Published online: 27 Mar 2023

REFERENCES

  • Bates, S., Phillips, A. C., Clarke, P., Stott, F., Peters, G., Ludwig, R. L., and Vousden, K. H.. 1998. E2F-1 regulation of p14ARF links pRB and p53. Nature 395:124–125
  • Chan, Y.-L., Lin, A., McNally, J., and Wool, I. G.. 1987. The primary structure of rat ribosomal protein L5. J. Biol. Chem. 262:12879–12886
  • Chang, J. H., Dumbar, T. S., and Olson, M. O.. 1988. cDNA and deduced primary structure of rat protein B23, a nucleolar protein containing highly conserved sequences. J. Biol. Chem. 263:12824–12827
  • Cochrane, A. W., Perkins, A., and Rosen, C. A.. 1990. Identification of sequences important in the nucleolar localization of human immunodeficiency virus Rev: relevance of nucleolar localization to function. J. Virol. 64:881–885
  • Dang, C. V., and Lee, W. M. F.. 1989. Nuclear and nucleolar targeting sequences of c-erb-A, c-myb, N-myc, p53, HSP70, and HIV tat proteins. J. Biol. Chem. 264:18019–18023
  • De Stanchina, E., McCurrach, M. E., Zindy, F., Shieh, S.-Y., Ferbeyre, G., Samuelson, A. V., Prives, C., Roussel, M. F., Sherr, C. J., and Lowe, S. W.. 1998. E1A signaling to p53 involves the p19ARF tumor suppressor. Genes Dev. 12:2434–2442
  • Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A.Jr., Butel, J. S., and Bradley, A.. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215–221
  • Eischen, C. M., Weber, J. D., Roussel, M. F., Sherr, C. J., and Cleveland, J. L.. 1999. Disruption of the ARF-MDM2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 13:2658–2669
  • Freedman, D. A., and Levine, A. J.. 1998. Nuclear export is required for degradation of endogenous p53 by mdm2 and human papillomavirus E6. Mol. Cell. Biol. 18:7288–7293
  • Giaccia, A. J., and Kastan, M. B.. 1998. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12:2973–2983
  • Grossman, S. R., Perez, M., Kung, A. L., Joseph, M., Mansur, C., Xiao, Z. X., Kumar, S., Howley, P. M., and Livingston, D. M.. 1998. p300/MDM2 complexes participate in MDM2-mediated p53 degradation. Mol. Cell 2:405–415
  • Haupt, Y., Maya, R., Kazaz, A., and Oren, M.. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299
  • Hinds, P. W., Finlay, C. A., Quartin, R. S., Baker, S. J., Fearon, E. R., Vogelstein, B., and Levine, A. J.. 1990. Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the “hot spot” mutant phenotypes. Cell Growth Differ. 1:571–580
  • Honda, R., Tanaka, H., and Yasuda, H.. 1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420:25–27
  • Honda, R., and Yasuda, H.. 1999. Association of p19ARF with Mdm2 inhibits ubiquitin ligase activity of MDM2 for tumor suppressor p53. EMBO J. 18:22–27
  • Jacks, T., Remington, L., Williams, B. O., Schmitt, E. M., Halachmi, S., Bronson, R. T., and Weinberg, R. A.. 1994. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4:1–7
  • Kamijo, T., Bodner, S., van de Kamp, E., Randle, D. H., and Sherr, C. J.. 1999. Tumor spectrum in ARF-deficient mice. Cancer Res. 59:2217–2222
  • Kamijo, T., Weber, J. D., Zambetti, G., Zindy, F., Roussel, M. F., and Sherr, C. J.. 1998. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc. Natl. Acad. Sci. USA 95:8292–8297
  • Kamijo, T., Zindy, F., Roussel, M. F., Quelle, D. E., Downing, J. R., Ashmun, R. A., Grosveld, G., and Sherr, C. J.. 1997. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91:649–659
  • Kemp, C. J., Wheldon, T., and Balmain, A.. 1994. p53-deficient mice are extremely susceptible to radiation-induced tumorigenesis. Nat. Genet. 8:66–69
  • Ko, L. J., and Prives, C.. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072
  • Kubbutat, M. H., Jones, S. N., and Vousden, K. H.. 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303
  • Kubbutat, M. H. G., Ludwig, R. L., Levine, A. J., and Vousden, K. H.. 1999. Analysis of the degradation function of Mdm2. Cell Growth Differ. 10:87–92
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331
  • Lohrum, M. A. E., Ashcroft M., Kubbutat M. H. G., and Vousden K. H.. Identification of a cryptic nucleolar localization signal in MDM2. Nat. Cell Biol., in press.
  • Marechal, V., Elenbaas, B., Piette, J., Nicolas, J.-C., and Levine, A. J.. 1994. The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol. Cell. Biol. 14:7414–7420
  • Martin, K., Trouche, D., Hagemeier, C., Sorensen, T. S., LaThangue, N. B., and Kouzarides, T.. 1995. Stimulation of E2F1/DP1 transcriptional activity by mdm2 oncoprotein. Nature 375:691–694
  • Michael, W. M., and Dreyfuss, G.. 1996. Distinct domains in ribosomal protein L5 mediate 5 S rRNA binding and nucleolar localization. J. Biol. Chem. 271:11571–11574
  • Momand, J., Zambetti, G. P., Olson, D. C., George, D., and Levine, A. J.. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell 69:1237–1245
  • Muller, A. J., Young, J. C., Pendergast, A. M., Pondel, M., Landau, N. R., Littman, D. R., and Witte, O. N.. 1994. BCR first exon sequences specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive leukemias. Mol. Cell. Biol. 11:1785–1792
  • Oliner, J. D., Pietenpol, J. A., Thiagalingam, S., Gyuris, J., Kinzler, K. W., and Vogelstein, B.. 1993. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362:857–860
  • Palmero, I., Pantoja, C., and Serrano, M.. 1998. p19ARF links the tumour suppressor p53 to ras. Nature 395:125–126
  • Pomerantz, J., Schreiber-Agus, N., Liégeois, N. J., Silverman, A., Alland, L., Chin, L., Potes, J., Chen, K., Orlow, I., Lee, H.-W., Cordon-Cardo, C., and DePinho, R.. 1998. The Ink4a tumor suppressor gene product, p19ARF, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92:713–723
  • Prives, C.. 1998. Signaling to p53:breaking the MDM2-p53 circuit. Cell 95:5–8
  • Quelle, D. E., Cheng, M., Ashmun, R. A., and Sherr, C. J.. 1997. Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc. Natl. Acad. Sci. USA 94:3436–3440
  • Quelle, D. E., Zindy, F., Ashmun, R. A., and Sherr, C. J.. 1995. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000
  • Radfar, A., Unnikrishnan, I., Lee, H.-W., DePinho, R. A., and Rosenberg, N.. 1998. p19Arf induces p53-dependent apoptosis during Abelson virus-mediated pre-B cell transformation. Proc. Natl. Acad. Sci. USA 95:13194–13199
  • Roth, J., Dobbelstein, M., Freedman, D., Shenk, T., and Levine, A. J.. 1998. Nucleocytoplasmic shuttling of the hdm2 oncoprotein regulates the levels of the p53 protein via a pathway used by the human immunodeficiency virus rev protein. EMBO J. 17:554–564
  • Schmidt, C., Lipsius, E., and Kruppa, J.. 1995. Nuclear and nucleolar targeting of human ribosomal protein S6. Mol. Biol. Cell 6:1875–1885
  • Serrano, M., Lee, H.-W., Chin, L., Cordon-Cardo, C., Beach, D., and DePinho, R. A.. 1996. Role of the INK4a locus in tumor suppression and cell mortality. Cell 85:27–37
  • Sharpless, N. E., and DePinho, R. A.. 1999. The INK4A/ARF locus and its two gene products. Curr. Opin. Genet. Dev. 9:22–30
  • Sherr, C. J.. 1998. Tumor surveillance via the ARF-p53 pathway. Genes Dev. 12:2984–2991
  • Siomi, H., Shida, H., Nam, S. H., Nosaka, T., Maki, M., and Hatanaka, M.. 1988. Sequence requirements for nucleolar localization of human T cell leukemia virus type 1 pX protein, which regulates viral RNA processing. Cell 55:197–209
  • Stommel, J. M., Marchenko, N. D., Jimenez, G. S., Moll, U. M., Hope, T. J., and Wahl, G. M.. 1999. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J. 18:1660–1672
  • Stott, F. J., Bates, S., James, M. C., McConnell, B. B., Starborg, M., Brookes, S., Palmero, I., Ryan, K., Hara, E., Vousden, K. H., and Peters, G.. 1998. The alternative product from the human CDKN2A locus, p14ARF, participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17:5001–5014
  • Tao, W., and Levine, A. J.. 1999. Nucleocytoplasmic shuttling of oncoprotein Hdm2 is required for Hdm2-mediated degradation of p53. Proc. Natl. Acad. Sci. USA 96:3077–3080
  • Tao, W., and Levine, A. J.. 1999. P19ARF stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl. Acad. Sci. USA 96:6937–6941
  • Weber, J. D., Taylor, L. J., Roussel, M. F., Sherr, C. J., and Bar-Sagi, D.. 1999. Nucleolar Arf sequesters Mdm2 and activates p53. Nat. Cell Biol. 1:20–26
  • Xiao, Z. X., Chen, J., Levine, A., Modjtahedi, N., Xing, J., Sellers, W. R., and Livingston, D. M.. 1995. Interactions between the retinoblastoma protein and the oncoprotein mdm2. Nature 375:694–697
  • Zeng, X., Chen, L., Jost, C. A., Maya, R., Keller, D., Wang, X., Kaelin, W. G.Jr., Oren, M., Chen, J., and Lu, H.. 1999. MDM2 suppresses p73 function without promoting p73 degradation. Mol. Cell. Biol. 19:3257–3266
  • Zhang, Y., and Xiong, Y.. 1999. Mutations in human ARF exon 2 disrupt its nucleolar localization and impair its ability to block nuclear export of MDM2 and p53. Mol. Cell 3:579–591
  • Zhang, Y., Xiong, Y., and Yarbrough, W. G.. 1998. ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppressor pathways. Cell 92:725–734
  • Zindy, F., Eischen, C. M., Randle, D., Kamijo, T., Cleveland, J. L., Sherr, C. J., and Roussel, M. F.. 1998. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12:2424–2433

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.