31
Views
40
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Sequence-Specific Recognition and Cleavage of Telomeric Repeat (TTAGG)n by Endonuclease of Non-Long Terminal Repeat Retrotransposon TRAS1

, &
Pages 100-108 | Received 13 Mar 2000, Accepted 13 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Aksoy, S., S. Williams, S. Chang, and F. F. Richards. 1990. SLACS retrotransposon from Trypanosoma brucei gambiense is similar to mammalian LINEs. Nucleic Acids Res. 18:785–792.
  • Besansky, N. J., S. M. Paskewitz, D. M. Hamm, and F. H. Collins. 1992. Distinct families of site-specific retrotransposons occupy identical positions in the rRNA genes of Anopheles gambiae. Mol. Cell. Biol. 12:5102–5110.
  • Biessmann, H., L. E. Champion, M. O'Hair, K. Ikenaga, B. Kasravi, and J. M. Mason. 1992. Frequent transpositions of Drosophila melanogaster HeT-A transposable elements to receding chromosome ends. EMBO J. 11:4459–4469.
  • Burke, W. D., F. Müller, and T. H. Eickbush. 1995. R4, a non-LTR retrotransposon specific to the large subunit rRNA genes of nematodes. Nucleic Acids Res. 23:4628–4634.
  • Christensen, S., G. Pont-Kingdon, and D. Carroll. 2000. Target specificity of the endonuclease from the Xenopus laevis non-long terminal repeat retrotransposon Tx1L. Mol. Cell. Biol. 20:1219–1226.
  • Cost, G. J., and J. D. Boeke. 1998. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry 37:18081–18093.
  • Eickbush, T. H., and B. Robins. 1985. Bombyx mori 28S ribosomal genes contain insertion elements similar to the Type I and II elements of Drosophila melanogaster. EMBO J. 4:2281–2285.
  • Feng, Q., G. Schumann, and J. D. Boeke. 1998. Retrotransposon R1Bm endonuclease cleaves the target sequence. Proc. Natl. Acad. Sci. USA 95:2083–2088.
  • Feng, Q., J. V. Moran, H. H. Kazazian Jr., and J. D. Boeke. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905–916.
  • Fujiwara, H., T. Ogura, N. Takada, N. Miyajima, H. Ishikawa, and H. Maekawa. 1984. Introns and their flanking sequences of Bombyx mori rDNA. Nucleic Acids Res. 12:6861–6869.
  • Gabriel, A., and J. D. Boeke. 1993. Retrotransposon reverse transcription. Reverse transcriptase.. A. M. Skalka, and S. P. Goff. 275–328. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Gabriel, A., T. J. Yen, D. C. Schwartz, C. L. Smith, J. D. Boeke, B. Sollner-Webb, and D. W. Cleveland. 1990. A rapidly rearranging retrotransposon within the miniexon gene locus of Crithidia fasciculata. Mol. Cell. Biol. 10:615–624.
  • Garrett, J. E., D. S. Knutzon, and D. Carroll. 1989. Composite transposable elements in the Xenopus laevis genome. Mol. Cell. Biol. 9:3018–3027.
  • George, J. A., W. D. Burke, and T. H. Eickbush. 1996. Analysis of the 5′ junctions of R2 insertions with the 28S gene: implications for non-LTR retrotransposition. Genetics 142:853–863.
  • Henderson, E.. 1995. Telomere structure. Telomeres.. E. H. Blackburn, and C. W. Greider. 11–34. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Jakubczak, J. L., W. D. Burke, and T. H. Eickbush. 1991. Retrotransposable elements R1 and R2 interrupt the rRNA genes of most insects. Proc. Natl. Acad. Sci. USA 88:3295–3299.
  • Jurka, J., P. Klonowski, and E. N. Trifonov. 1998. Mammalian retroposons integrate at kinkable DNA sites. J. Biomol. Struct. Dyn. 15:717–721.
  • Levis, R. W., R. Ganesan, K. Houtchens, L. A. Tolar, and F. M. Sheen. 1993. Transposons in place of telomeric repeats at a Drosophila telomere. Cell 75:1083–1093.
  • Luan, D. D., M. H. Korman, J. L. Jakubczak, and T. H. Eickbush. 1993. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595–605.
  • Luan, D. D., and T. H. Eickbush. 1996. Downstream 28S gene sequences on the RNA template affect the choice of primer and the accuracy of initiation by the R2 reverse transcriptase. Mol. Cell. Biol. 16:4726–4734.
  • Malik, H. S., W. D. Burke, and T. H. Eickbush. 1999. The age and evolution of non-LTR retrotransposable elements. Mol. Biol. Evol. 16:793–805.
  • McNamara, P. T., A. Bolshoy, E. N. Trifonov, and R. E. Harrington. 1990. Sequence-dependent kinks induced in curved DNA. J. Biomol. Struct. Dyn. 8:529–538.
  • Meyne, J., R. L. Ratliff, and R. K. Moyzis. 1989. Conservation of the human telomere sequence (TTAGGG)n among vertebrates. Proc. Natl. Acad. Sci. USA 86:7049–7053.
  • Mol, C. D., C. F. Kuo, M. M. Thayer, R. P. Cunningham, and J. A. Tainer. 1995. Structure and function of the multifunctional DNA-repair enzyme exonuclease III. Nature 23:381–386.
  • Okazaki, S., H. Ishikawa, and H. Fujiwara. 1995. Structural analysis of TRAS1, a novel family of telomeric repeat-associated retrotransposons in the silkworm, Bombyx mori. Mol. Cell. Biol. 15:4545–4552.
  • Okazaki, S., K. Tsuchida, H. Maekawa, H. Ishikawa, and H. Fujiwara. 1993. Identification of a pentanucleotide telomeric sequence, (TTAGG)n, in the silkworm Bombyx mori and in other insects. Mol. Cell. Biol. 13:1424–1432.
  • Paskewitz, S. M., and F. H. Collins. 1989. Site-specific ribosomal DNA insertion elements in Anopheles gambiae and A. arabiensis: nucleotide sequence of gene-element boundaries. Nucleic Acids Res. 17:8125–8133.
  • Sahara, K., F. Marec, and W. Traut. 1999. TTAGG telomeric repeats in chromosomes of some insects and other arthropods. Chromosome Res. 7:449–460.
  • Spitzner, J. R., I. K. Chung, T. D. Gootz, P. R. McGuirk, and M. T. Muller. 1995. Analysis of eukaryotic topoisomerase II cleavage sites in the presence of the quinolone CP-115,953 reveals drug-dependent and -independent recognition elements. Mol. Pharmacol. 48:238–249.
  • Suck, D., A. Lahm, and C. Oefner. 1988. Structure refined to 2Å of a nicked DNA octanucleotide complex with DNase I. Nature 332:464–468.
  • Takahashi, H., and H. Fujiwara. 1999. Transcription analysis of the telomeric repeat-specific retrotransposons TRAS1 and SART1 of the silkworm Bombyx mori. Nucleic Acids Res. 27:2015–2021.
  • Takahashi, H., S. Okazaki, and H. Fujiwara. 1997. A new family of site-specific retrotransposons, SART1, is inserted into telomeric repeats of the silkworm, Bombyx mori. Nucleic Acids Res. 25:1578–1584.
  • Tatout, C., L. Lavie, and J. M. Deragon. 1998. Similar target site selection occurs in integration of plant and mammalian retroposons. J. Mol. Evol. 47:463–470.
  • Villanueva, M. S., S. P. Williams, C. B. Beard, F. F. Richards, and S. Aksoy. 1991. A new member of a family of site-specific retrotransposons is present in the spliced leader RNA genes of Trypanosoma cruzi. Mol. Cell. Biol. 11:6139–6148.
  • Winkler, F. K., D. W. Banner, C. Oefner, D. Tsernoglou, R. S. Brown, S. P. Heathman, R. K. Bryan, P. D. Martin, K. Petratos, and K. S. Wilson. 1993. The crystal structure of EcoRV endonuclease and of its complexes with cognate and non-cognate DNA fragments. EMBO J. 12:1781–1795.
  • Wright, W. E., V. M. Tesmer, K. E. Huffman, S. D. Levene, and J. W. Shay. 1997. Normal human chromosomes have long G-rich telomeric overhangs at one end. Genes Dev. 11:2801–2809.
  • Xiong, Y. E., and T. H. Eickbush. 1988. Functional expression of a sequence-specific endonuclease encoded by the retrotransposon R2Bm. Cell 55:235–246.
  • Yang, J., H. S. Malik, and T. H. Eickbush. 1999. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Proc. Natl. Acad. Sci. USA 96:7847–7852.
  • Yang, J., and T. H. Eickbush. 1998. RNA-induced changes in the activity of the endonuclease encoded by the R2 retrotransposable element. Mol. Cell. Biol. 18:3455–3465.
  • Yoon, H. J., I. Y. Choi, M. R. Kang, S. S. Kim, M. T. Muller, J. R. Spitzner, and I. K. Chung. 1998. DNA topoisomerase II cleavage of telomeres in vitro and in vivo. Biochim. Biophys. Acta 1395:110–120.
  • Zhu, Y., S. Zou, D. A. Wright, and D. F. Voytas. 1999. Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p. Genes Dev. 13:2738–2749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.