76
Views
162
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Tsc13p Is Required for Fatty Acid Elongation and Localizes to a Novel Structure at the Nuclear-Vacuolar Interface in Saccharomyces cerevisiae

, , , , , & show all
Pages 109-125 | Received 08 Aug 2000, Accepted 03 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Bagnat, M., S. Keranen, A. Shevchenko, and K. Simons. 2000. Lipid rafts function in biosynthetic delivery of proteins to the cell surface in yeast. Proc. Natl. Acad. Sci. USA 97:3254–3259.
  • Beeler, T., D. Bacikova, K. Gable, L. Hopkins, C. Johnson, H. Slife, and T. Dunn. 1998. The Saccharomyces cerevisiae TSC10/YBR265w gene encoding 3-ketosphinganine reductase is identified in a screen for temperature-sensitive suppressors of the Ca2+-sensitive csg2Δ mutant. J. Biol. Chem. 273:30688–30694.
  • Beeler, T. J., D. Fu, J. Rivera, E. Monaghan, K. Gable, and T. M. Dunn. 1997. SUR1 (CSG1/BCL21), a gene necessary for growth of Saccharomyces cerevisiae in the presence of high Ca2+ concentrations at 37°C, is required for mannosylation of inositolphosphorylceramide. Mol. Gen. Genet. 255:570–579.
  • Bergler, H., P. Wallner, A. Ebeling, B. Leitinger, S. Fuchsbichler, H. Aschauer, G. Kollenz, G. Hogenauer, and F. Turnowsky. 1994. Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J. Biol. Chem. 269:5493–5496.
  • Bernert, J. T. Jr., J. M. Bourre, N. A. Baumann, and H. Sprecher. 1979. The activity of partial reactions in the chain elongation of palmitoyl-CoA and stearoyl-CoA by mouse brain microsomes. J. Neurochem. 32:85–90.
  • Choi, J. Y., and C. E. Martin. 1999. The Saccharomyces cerevisiae FAT1 gene encodes an acyl-CoA synthetase that is required for maintenance of very long chain fatty acid levels. J. Biol. Chem. 274:4671–4683.
  • Cinti, D. L., L. Cook, M. N. Nagi, and S. J. Suneja. 1992. The fatty acid chain elongation system of mammalian endoplasmic reticulum. Prog. Lipid Res. 31:1–51.
  • Coghlan, A., and K. H. Wolfe. 2000. Relationship of codon bias to mRNA concentration and protein length in Saccharomyces cerevisiae. Yeast 16:1131–1145.
  • Costanzo, M. C., J. D. Hogan, M. E. Cusick, B. P. Davis, A. M. Fancher, P. E. Hodges, P. Kondu, C. Lengieza, J. E. Lew-Smith, C. Lingner, K. J. Roberg-Perez, M. Tillberg, J. E. Brooks, and J. I. Garrels. 2000. The yeast proteome database (YPD) and Caenorhabditis elegans proteome database (WormPD): comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Res. 28:73–76.
  • David, C., M. Solimena, and P. De Camilli. 1994. Autoimmunity in stiff-man syndrome with breast cancer is targeted to the C-terminal region of human amphiphysin, a protein similar to the yeast proteins, Rvs167 and Rvs161. FEBS Lett. 351:73–79.
  • David, D., S. Sundarababu, and J. E. Gerst. 1998. Involvement of long chain fatty acid elongation in the trafficking of secretory vesicles in yeast. J. Cell Biol. 143:1167–1182.
  • Desfarges, L., P. Durrens, H. Juguelin, C. Cassagne, M. Bonneu, and M. Aigle. 1993. Yeast mutants affected in viability upon starvation have a modified phospholipid composition. Yeast 9:267–277.
  • Dickson, R. C.. 1998. Sphingolipid functions in Saccharomyces cerevisiae: comparison to mammals. Annu. Rev. Biochem. 67:27–48.
  • Dittrich, F., D. Zajonc, K. Huhne, U. Hoja, A. Ekici, E. Greiner, H. Klein, J. Hofmann, J. J. Bessoule, P. Sperling, and E. Schweizer. 1998. Fatty acid elongation in yeast—biochemical characteristics of the enzyme system and isolation of elongation-defective mutants. Eur. J. Biochem. 252:477–485.
  • Dunn, T. M., K. Gable, E. Monaghan, and D. Bacikova. 2000. Selection of yeast mutants in sphingolipid metabolism. Methods Enzymol. 312:317–330.
  • Dunn, T. M., D. Haak, E. Monaghan, and T. J. Beeler. 1998. Synthesis of monohydroxylated inositolphosphorylceramide (IPC-C) in Saccharomyces cerevisiae requires Scs7p, a protein with both a cytochrome b5-like domain and a hydroxylase/desaturase domain. Yeast 14:311–321.
  • el-Sherbeini, M., and J. A. Clemas. 1995. Cloning and characterization of GNS1: a Saccharomyces cerevisiae gene involved in synthesis of 1,3-β-glucan in vitro. J. Bacteriol. 177:3227–3234.
  • Gable, K., H. Slife, D. Bacikova, E. Monaghan, and T. M. Dunn. 2000. Tsc3p is an 80-amino acid protein associated with serine palmitoyltransferase and required for optimal enzyme activity. J. Biol. Chem. 275:7597–7603.
  • Garcia-Arranz, M., A. M. Maldonado, M. J. Mazon, and F. Portillo. 1994. Transcriptional control of yeast plasma membrane H+-ATPase by glucose. Cloning and characterization of a new gene involved in this regulation. J. Biol. Chem. 269:18076–18082.
  • Haak, D., K. Gable, T. Beeler, and T. Dunn. 1997. Hydroxylation of Saccharomyces cerevisiae ceramides requires Sur2p and Scs7p. J. Biol. Chem. 272:29704–29710.
  • Hasslacher, M., A. S. Ivessa, F. Paltauf, and S. D. Kohlwein. 1993. Acetyl-CoA carboxylase from yeast is an essential enzyme and is regulated by factors that control phospholipid metabolism. J. Biol. Chem. 268:10946–10952.
  • Hechtberger, P., E. Zinser, R. Saf, K. Hummel, F. Paltauf, and G. Daum. 1994. Characterization, quantification and subcellular localization of inositol-containing sphingolipids of the yeast, Saccharomyces cerevisiae. Eur. J. Biochem. 225:641–649.
  • Johnston, I. G., S. J. Rush, J. W. Gurd, and I. R. Brown. 1992. Molecular cloning of a novel mRNA using an antibody directed against synaptic glycoproteins. J. Neurosci. Res. 32:159–166.
  • Kanipes, M. I., and S. A. Henry. 1997. The phospholipid methyltransferases in yeast. Biochim. Biophys. Acta 1348:134–141.
  • Knoll, A., J. J. Bessoule, F. Sargueil, and C. Cassagne. 1999. Dehydration of 3-hydroxyacyl-CoA in brain very-long-chain fatty acid synthesis. Neurochem. Int. 34:255–267.
  • Kohlwein, S. D. The beauty of the yeast: live cell microscopy at the limits of optical resolution. Microsc. Res. Technol. in press.
  • Koning, A. J., C. J. Roberts, and R. L. Wright. 1996. Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations. Mol. Biol. Cell 7:769–789.
  • Kuziora, M. A., J. H. Chalmers Jr., M. G. Douglas, R. A. Hitzeman, J. S. Mattick, and S. J. Wakil. 1983. Molecular cloning of fatty acid synthetase genes from Saccharomyces cerevisiae. J. Biol. Chem. 258:11648–11653.
  • Lassner, M. W., K. Lardizabal, and J. G. Metz. 1996. A jojoba β-ketoacyl-CoA synthase cDNA complements the canola fatty acid elongation mutation in transgenic plants. Plant Cell 8:281–292.
  • Lester, R. L., G. B. Wells, G. Oxford, and R. C. Dickson. 1993. Mutant strains of Saccharomyces cerevisiae lacking sphingolipids synthesize novel inositol glycerophospholipids that mimic sphingolipid structures. J. Biol. Chem. 268:845–856.
  • Mao, C., X. Ruijuan, A. Bielawska, and L. Obeid. 2000. Cloning of an alkaline ceramidase from Saccharomyces cerevisiae. An enzyme with reverse (CoA-independent) ceramide synthase activity. J. Biol. Chem. 275:6876–6884.
  • Millar, A. A., S. Clemens, S. Zachgo, E. M. Giblin, D. C. Taylor, and L. Kunst. 1999. CUT1, an Arabidopsis gene required for cuticular wax biosynthesis and pollen fertility, encodes a very-long-chain fatty acid condensing enzyme. Plant Cell 11:825–838.
  • Millar, A. A., and L. Kunst. 1997. Very-long-chain fatty acid biosynthesis is controlled through the expression and specificity of the condensing enzyme. Plant J. 12:121–131.
  • Mitchell, A. G., and C. E. Martin. 1997. Fah1p, a Saccharomyces cerevisiae cytochrome b5 fusion protein, and its Arabidopsis thaliana homolog that lacks the cytochrome b5 domain both function in the α-hydroxylation of sphingolipid-associated very long chain fatty acids. J. Biol. Chem. 272:28281–28288.
  • Munn, A. L., B. J. Stevenson, M. I. Geli, and H. Riezman. 1995. end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol. Biol. Cell 6:1721–1742.
  • Nagiec, M. M., G. B. Wells, R. L. Lester, and R. C. Dickson. 1993. A suppressor gene that enables Saccharomyces cerevisiae to grow without making sphingolipids encodes a protein that resembles an Escherichia coli fatty acyltransferase. J. Biol. Chem. 268:22156–22163.
  • Oh, C. S., D. A. Toke, S. Mandala, and C. E. Martin. 1997. ELO2 and ELO3, homologues of the Saccharomyces cerevisiae ELO1 gene, function in fatty acid elongation and are required for sphingolipid formation. J. Biol. Chem. 272:17376–17384.
  • Pan, X., and D. S. Goldfarb. 1998. YEB3/VAC8 encodes a myristylated armadillo protein of the Saccharomyces cerevisiae vacuolar membrane that functions in vacuole fusion and inheritance. J. Cell Sci. 111:2137–2147.
  • Pan, X., P. Roberts, Y. Chen, E. Kvam, N. Shulga, K. Huang, S. Lemmon, and D. S. Goldfarb. 2000. Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol. Biol. Cell 11:2445–2457.
  • Parrish, M. L., C. Sengstag, J. D. Rine, and R. L. Wright. 1995. Identification of the sequences in HMG-CoA reductase required for karmellae assembly. Mol. Biol. Cell 6:1535–1547.
  • Preston, R. A., M. F. Manolson, K. Becherer, E. Weidenhammer, D. Kirkpatrick, R. Wright, and E. W. Jones. 1991. Isolation and characterization of PEP3, a gene required for vacuolar biogenesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:5801–5812.
  • Preston, R. A., P. S. Reinagel, and E. W. Jones. 1992. Genes required for vacuolar acidity in Saccharomyces cerevisiae. Genetics 131:551–558.
  • Revardel, E., M. Bonneau, P. Durrens, and M. Aigle. 1995. Characterization of a new gene family developing pleiotropic phenotypes upon mutation in Saccharomyces cerevisiae. Biochim. Biophys. Acta 1263:261–265.
  • Roggenkamp, R., S. Numa, and E. Schweizer. 1980. Fatty acid-requiring mutant of Saccharomyces cerevisiae defective in acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. USA 77:1814–1817.
  • Rose, M. D., P. Novick, J. H. Thomas, D. Botstein, and G. R. Fink. 1987. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243.
  • Schneiter, R.. 1999. Brave little yeast, please guide us to Thebes: sphingolipid function in S. cerevisiae. Bioessays 21:1004–1010.
  • Schneiter, R., C. E. Guerra, M. Lampl, V. Tatzer, G. Zellnig, H. L. Klein, and S. D. Kohlwein. 2000. A novel cold-sensitive allele of the rate-limiting enzyme of fatty acid synthesis, acetyl coenzyme A carboxylase, affects the morphology of the yeast vacuole through acylation of Vac8p. Mol. Cell. Biol. 20:2984–2995.
  • Schneiter, R., M. Hitomi, A. S. Ivessa, E. V. Fasch, S. D. Kohlwein, and A. M. Tartakoff. 1996. A yeast acetyl coenzyme A carboxylase mutant links very-long-chain fatty acid synthesis to the structure and function of the nuclear membrane-pore complex. Mol. Cell. Biol. 16:7161–7172.
  • Schneiter, R., and S. D. Kohlwein. 1997. Organelle structure, function, and inheritance in yeast: a role for fatty acid synthesis?. Cell 88:431–434.
  • Schneiter, R., V. Tatzer, G. Gogg, E. Leitner, and S. D. Kohlwein. 2000. Elo1p-dependent carboxy-terminal elongation of C14:1Δ9 to C16:1Δ11 fatty acids in Saccharomyces cerevisiae. J. Bacteriol. 182:3655–3660.
  • Schneiter, R., and S. D. Kohlwein. 1998. Identification of a very-long-chain fatty acid substituted phosphatidylinositol that possibly stabilizes highly curved membrane domains in yeast. Chem. Phys. Lipids 94:167
  • Schweizer, E., K. Werkmeister, and M. K. Jain. 1978. Fatty acid biosynthesis in yeast. Mol. Cell. Biochem. 21:95–107.
  • Schweizer, M., C. Lebert, J. Holtke, L. M. Roberts, and E. Schweizer. 1984. Molecular cloning of the yeast fatty acid synthetase genes, FAS1 and FAS2: illustrating the structure of the FAS1 cluster gene by transcript mapping and transformation studies. Mol. Gen. Genet. 194:457–465.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Silve, S., P. Leplatois, A. Josse, P. H. Dupuy, C. Lanau, M. Kaghad, C. Dhers, C. Picard, A. Rahier, M. Taton, G. Le Fur, D. Caput, P. Ferrara, and G. Loison. 1996. The immunosuppressant SR 31747 blocks cell proliferation by inhibiting a steroid isomerase in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2719–2727.
  • Sivadon, P., F. Bauer, M. Aigle, and M. Crouzet. 1995. Actin cytoskeleton and budding pattern are altered in the yeast rvs161 mutant: the Rvs161 protein shares common domains with the brain protein amphiphysin. Mol. Gen. Genet. 246:485–495.
  • Sivadon, P., M. Crouzet, and M. Aigle. 1997. Functional assessment of the yeast Rvs161 and Rvs167 protein domains. FEBS Lett. 417:21–27.
  • Toke, D. A., and C. E. Martin. 1996. Isolation and characterization of a gene affecting fatty acid elongation in Saccharomyces cerevisiae. J. Biol. Chem. 271:18413–18422.
  • Tuller, G., B. Prein, A. Jandrositz, G. Daum, and S. D. Kohlwein. 1999. Deletion of six open reading frames from the left arm of chromosome IV of Saccharomyces cerevisiae. Yeast 15:1275–1285.
  • Tvrdik, P., R. Westerberg, S. Silve, A. Asadi, A. Jakobsson, B. Cannon, G. Loison, and A. Jacobsson. 2000. Role of a new mammalian gene family in the biosynthesis of very long chain fatty acids and sphingolipids. J. Cell Biol. 149:707–718.
  • Vahlensieck, H. F., L. Pridzun, H. Reichenbach, and A. Hinnen. 1994. Identification of the yeast ACC1 gene product (acetyl-CoA carboxylase) as the target of the polyketide fungicide soraphen A. Curr. Genet. 25:95–100.
  • Vida, T. A., and S. D. Emr. 1995. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J. Cell Biol. 128:779–792.
  • Wach, A., A. Brachat, C. Alberti-Segui, C. Rebischung, and P. Philippsen. 1997. Heterologous HIS3 marker and GFP reporter modules for PCR-targeting in Saccharomyces cerevisiae. Yeast 13:1065–1075.
  • Wakil, S. J.. 1989. Fatty acid synthase, a proficient multifunctional enzyme. Biochemistry 28:4523–4530.
  • Wang, Y. X., N. L. Catlett, and L. S. Weisman. 1998. Vac8p, a vacuolar protein with armadillo repeats, functions in both vacuole inheritance and protein targeting from the cytoplasm to vacuole. J. Cell Biol. 140:1063–1074.
  • Wright, R., M. Basson, L. D'Ari, and J. Rine. 1988. Increased amounts of HMG-CoA reductase induce “karmellae”: a proliferation of stacked membrane pairs surrounding the yeast nucleus. J. Cell Biol. 107:101–114.
  • Zhao, C., T. Beeler, and T. Dunn. 1994. Suppressors of the Ca2+-sensitive yeast mutant (csg2) identify genes involved in sphingolipid biosynthesis. Cloning and characterization of SCS1, a gene required for serine palmitoyltransferase activity. J. Biol. Chem. 269:21480–21488.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.