16
Views
43
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

The Sko1p Repressor and Gcn4p Activator Antagonistically Modulate Stress-Regulated Transcription in Saccharomyces cerevisiae

, &
Pages 16-25 | Received 10 Jul 2000, Accepted 06 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Arndt, K., and G. R. Fink. 1986. GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5′ TGACTC 3′ sequences. Proc. Natl. Acad. Sci. USA 83:8516–8520.
  • Brewster, J. L., T. de Valoir, N. D. Dwyer, E. Winter, and M. Gustin. 1993. An osmosensing signal transduction pathway in yeast. Science 259:1760–1763.
  • Carlson, M., and D. Botstein. 1982. Two differentially regulated mRNAs with different 5′-ends encode secreted and intracellular forms of yeast invertase. Cell 28:145–154.
  • Coleman, A. T., E. Tseng, and W. S. Moye-Rowley. 1997. Saccharomyces cerevisiae basic region-leucine zipper protein regulatory networks converge at the ATR1 structural gene. J. Biol. Chem. 272:23224–23230.
  • Ellenberger, T. E., C. J. Brandl, K. Struhl, and S. C. Harrison. 1992. The GCN4 basic region leucine zipper binds DNA as a dimer of uninterrupted α-helices: crystal structure of the protein-DNA complex. Cell 71:1223–1237.
  • Ferrigno, P., F. Posas, D. Koepp, H. Saito, and P. A. Silver. 1998. Regulated nucleo/cytoplasmic exchange of HOG1 MAPK requires the importin b homologs NMD5 and XPO1. EMBO J. 17:5606–5614.
  • Garciadeblas, B., F. Rubio, F. J. Quintero, M. A. Bañuelos, R. Haro, and A. Rodrı́guez-Navarro. 1993. Differential expression of two genes encoding isoforms of the ATPase involved in sodium efflux in Saccharomyces cerevisiae. Mol. Gen. Genet. 236:363–368.
  • Garcia-Gimeno, A. M., and K. Struhl. 2000. Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol. Cell. Biol. 20:4340–4349.
  • Gaxiola, R., I. F. deLarrinoa, J. M. Villalba, and R. Serrano. 1992. A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J. 11:3157–3164.
  • Güldener, U., S. Heck, T. Fiedler, J. Beinhauer, and J. H. Hegemann. 1996. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 24:2519–2524.
  • Hill, D. E., I. A. Hope, J. P. Macke, and K. Struhl. 1986. Saturation mutagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Science 234:451–457.
  • Hinnebusch, A.. 1992. General and pathway-specific regulatory mechanisms controlling the synthesis of amino acid biosynthetic enzymes in S. cerevisiae. The molecular and cellular biology of the yeast Saccharomyces. Gene expression. E. W. Jones, J. R. Pringle, and J. R. Broach. II:319–415. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Hinnebusch, A.. 1997. Translational regulation of GCN4. J. Biol. Chem. 272:21661–21664.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Hohmann, S.. 1997. Shaping up: the response of yeast to osmotic stress. Yeast stress responses. R. G.. S. Hohmann, and W. H. Mager. 101–134. Landes Co., Austin, Tex
  • Hope, I. A., and K. Struhl. 1986. Functional dissection of a eukaryotic transcriptional activator protein, GCN4 of yeast. Cell 46:885–894.
  • Kanazawa, S., M. Driscoll, and K. Struhl. 1988. ATR1, a Saccharomyces cerevisiae gene encoding a transmembrane protein required for aminotriazole resistance. Mol. Cell. Biol. 8:664–673.
  • Khaware, R. K., D. Jethwaney, and R. Prasad. 1996. Role of PM-ATPase, amino acid transport and free amino acid pool in the salt stress of Candida membranefaciens. Biochem. Mol. Biol. Int. 39:421–429.
  • König, P., and T. J. Richmond. 1993. The X-ray structure of GCN4-bZIP bound to ATF/CREB site DNA shows the complex depends on DNA flexibility. J. Mol. Biol. 233:139–154.
  • Lalli, E., and P. Sassone-Corsi. 1994. Signal transduction and gene regulation: the nuclear response to cAMP. J. Biol. Chem. 269:17359–17362.
  • Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764.
  • Maeda, T., S. M. Wurgler-Murphy, and H. Saito. 1994. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369:242–245.
  • Márquez, J. A., A. Pascual-Ahuir, M. Proft, and R. Serrano. 1998. The Ssn6-Tup1 repressor complex of Saccharomyces cerevisiae is involved in the osmotic induction of HOG-dependent and -independent genes. EMBO J. 17:2543–2553.
  • Martı́nez-Pastor, M. T., G. Marchler, C. Schüller, A. Marchler-Bauer, H. Ruis, and F. Estruch. 1996. The Saccharomyces cerevisiae zinc finger proteins Msn2p and Msn4p are required for transcriptional induction through the stress-response element (STRE). EMBO J. 15:2227–2235.
  • Matheos, D. P., T. J. Kingsbury, U. S. Ahsan, and K. W. Cunningham. 1997. Tcn1p/Crz1p, a calcineurin-dependent transcription factor that differentially regulates gene expression in Saccharomyces cerevisiae. Genes Dev. 11:3445–3458.
  • Mendizabal, I., G. Rios, J. M. Mulet, R. Serrano, and I. F. deLarrinoa. 1998. Yeast putative transcription factors involved in salt tolerance. FEBS Lett. 425:323–328.
  • Molina, C. A., N. S. Foulkes, E. Lalli, and P. Sassone-Corsi. 1993. Inducibility and negative autoregulation of CREM: an alternative promoter directs the expression of ICER, an early response repressor. Cell 75:875–886.
  • Nehlin, J. O., M. Carlberg, and H. Ronne. 1992. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res. 20:5271–5278.
  • Norbeck, J., and A. Blomberg. 1998. Amino acid uptake is strongly affected during exponential growth of Saccharomyces cerevisiae in 0.7 M NaCl medium. FEMS Microbiol. Lett. 158:121–126.
  • Norbeck, J., and A. Blomberg. 2000. The level of cAMP-dependent protein kinase A activity strongly affects osmotolerance and osmo-instigated gene expression changes in S. cerevisiae. Yeast 16:121–137.
  • Posas, F., S. M. Wurgler-Murphy, T. Maeda, E. A. Witten, T. C. Thai, and H. Saito. 1996. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 “Two-component” osmosensor. Cell 86:865–875.
  • Posas, F., J. R. Chambers, J. A. Heyman, J. P. Hoeffler, E. de Nadal, and J. Ariño. 2000. The transcriptional response of yeast to saline stress. J. Biol. Chem. 275:17249–17255.
  • Proft, M., and R. Serrano. 1999. Repressors and upstream repressing sequences of the stress-regulated ENA1 gene in S. cerevisiae: bZIP protein Sko1p confers HOG-dependent osmotic regulation. Mol. Cell. Biol. 19:537–546.
  • Quandt, K., K. Frech, H. Karas, E. Wingender, and T. Werner. 1995. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Res. 23:4878–4884.
  • Reiser, V., H. Ruis, and G. Ammerer. 1999. Kinase activity-dependent nuclear export opposes stress-induced nuclear accumulation and retention of Hog1 mitogen-activated protein kinase in the budding yeast S. cerevisiae. Mol. Biol. Cell 10:1147–1161.
  • Rep, M., V. Reiser, U. Gartner, J. M. Thevelein, S. Hohmann, G. Ammerer, and H. Ruis. 1999. Osmotic stress-induced gene expression in S. cerevisiae requires Msn1p and the novel nuclear factor Hot1p. Mol. Cell. Biol. 19:5474–5485.
  • Rep, M., M. Krantz, J. M. Thevelein, and S. Hohmann. 2000. The transcriptional response of S. cerevisiae to osmotic shock: Hot1p and Msn2p/Msn4p are required for the induction of subsets of HOG-dependent genes. J. Biol. Chem. 275:8290–8300.
  • Rios, G., A. Ferrando, and R. Serrano. 1997. Mechanisms of salt tolerance conferred by overexpression of the HAL1 gene in Saccharomyces cerevisiae. Yeast 13:515–528.
  • Roberts, S. K., M. Fischer, G. K. Dixon, and D. Sanders. 1999. Divalent cation block of inward currents and low-affinity K+ uptake in Saccharomyces cerevisiae. J. Bacteriol. 181:291–297.
  • Sassone-Corsi, P.. 1998. Coupling gene expression to cAMP signalling: role for CREB and CREM. Int. J. Biochem. Cell Biol. 30:27–38.
  • Schmitt, A. P., and K. McEntee. 1996. Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 93:5777–5782.
  • Sellers, J. W., A. C. Vincent, and K. Struhl. 1990. Mutations that define the optimal half-site for binding yeast GCN4 activator protein and identify an ATF/CREB-like repressor that recognizes similar DNA sites. Mol. Cell. Biol. 10:5077–5086.
  • Serrano, R. Halotolerance genes in yeast. In A. Läuchli and U. Lüttge (ed.), Salinity, environment, plants, molecules, in press. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  • Shaywitz, A. J., and M. E. Greenberg. 1999. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals. Annu. Rev. Biochem. 68:821–861.
  • Stathopoulos, A. M., and M. S. Cyert. 1997. Calcineurin acts through the CRZ1/TCN1-encoded transcription factor to regulate gene expression in yeast. Genes Dev. 11:3432–3444.
  • Suckow, M., B. von Wilcken-Bergmann, and B. Müller-Hill. 1993. Identification of three residues in the basic region of the bZIP proteins GCN4, C/EBP and TAF-1 that are involved in specific DNA binding. EMBO J. 12:1193–1200.
  • Suckow, M., and C. P. Hollenberg. 1998. The activation specificities of wild-type and mutant Gcn4p in vivo can be different from the DNA binding specificities of the corresponding bZIP peptides in vitro. J. Mol. Biol. 276:887–902.
  • Thevelein, J. M.. 1994. Signal transduction in yeast. Yeast 10:1753–1790.
  • Vallejo, C. G., and R. Serrano. 1989. Physiology of mutants with reduced expression of plasma membrane H+-ATPase. Yeast 5:307–319.
  • Vincent, A. C., and K. Struhl. 1992. ACR1, a yeast ATF/CREB repressor. Mol. Cell. Biol. 12:5394–5405.
  • Wallis, J. W., G. Chrebet, G. Brodsky, M. Rolfe, and R. Rothstein. 1989. A hyper-recombination mutation in S. cerevisiae identifies a novel eukaryotic topoisomerase. Cell 58:409–419.
  • Wang, J., O. Sirenko, and R. Needleman. 1997. Genomic footprinting of Mig1p in the MAL62 promoter. J. Biol. Chem. 272:4613–4622.
  • Wu, J., and R. J. Trumbly. 1998. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site. Yeast 14:985–1000.
  • Xie, J., M. Pierce, V. Gailus-Durner, M. Wagner, E. Winter, and A. K. Vershon. 1999. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 18:6448–6454.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.