16
Views
28
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Cross Talk between tRNA and rRNA Synthesis in Saccharomyces cerevisiae

, , &
Pages 189-195 | Received 05 Jul 2000, Accepted 09 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Bertrand, E., F. Houser-Scott, A. Kendall, R. H. Singer, and D. R. Engelke. 1998. Nucleolar localization of early tRNA processing. Genes Dev. 12:2463–2468.
  • Bredow, S., H. Kleinert, and B. J. Benecke. 1990. Sequence and factor requirements for faithful in vitro transcription of human 7SL DNA. Gene 86:217–225.
  • Carles, C., and M. Riva. 1998. Yeast RNA polymerase I subunits and genes. Transcription of ribosomal RNA genes by eukaryotic RNA polymerase I.. M. R. Paule. 9–38. Springer Verlag, Berlin, Germany
  • Chamberlain, J. R., E. Pagàn-Ramos, D. W. Kindelberger, and D. R. Engelke. 1996. An RNAse P subunit mutation affects ribosomal RNA processing. Nucleic Acids Res. 24:3158–3166.
  • Chédin, S., M. L. Ferri, G. Peyroche, J. C. Andrau, S. Jourdain, O. Lefebvre, M. Werner, C. Carles, and A. Sentenac. 1998. The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation. Cold Spring Harbor Symp. Quant. Biol. 63:381–389.
  • Clarke, E. M., C. L. Peterson, A. V. Brainard, and D. L. Riggs. 1996. Regulation of the RNA polymerase I and III transcription systems in response to growth conditions. J. Biol. Chem. 271:22189–22195.
  • Dechampesme, A. M., O. Koroleva, I. Leger-Silvestre, N. Gas, and S. Camier. 1999. Assembly of 5S ribosomal RNA is required at a specific step of the pre-rRNA processing pathway. J. Cell Biol. 145:1369–1380.
  • Deshmukh, M., Y. F. Tsay, A. G. Paulovich, and J. L. Woolford Jr.. 1993. Yeast ribosomal protein L1 is required for the stability of newly synthesized 5S rRNA and the assembly of 60S ribosomal subunits. Mol. Cell. Biol. 13:2835–2845.
  • Dieci, G., S. Hermann-Le Denmat, E. Lukhtanov, P. Thuriaux, M. Werner, and A. Sentenac. 1995. A universally conserved region of the largest subunit participates in the active site of RNA polymerase III. EMBO J. 14:3766–3776.
  • Felici, F., G. Cesareni, and J. M. X. Hughes. 1989. The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal cell growth. Mol. Cell. Biol. 9:3260–3268.
  • Gadal, O., S. Mariotte-Labarre, S. Chédin, E. Quémeneur, C. Carles, A. Sentenac, and P. Thuriaux. 1997. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine. Mol. Cell. Biol. 17:1787–1795.
  • Gudenus, R., S. Mariotte, A. Moenne, A. Ruet, S. Memet, J. M. Buhler, A. Sentenac, and P. Thuriaux. 1988. Conditional mutants of RPC160, the gene encoding the largest subunit of RNA polymerase C in Saccharomyces cerevisiae. Genetics 119:517–526.
  • Hermann-Le Denmat, S., M. Werner, A. Sentenac, and P. Thuriaux. 1994. Suppression of yeast RNA polymerase III mutations by FHL1, a gene coding for a fork head protein involved in rRNA processing. Mol. Cell. Biol. 14:2905–2913.
  • Hughes, J. M. X., D. A. M. Konings, and G. Cesareni. 1987. The yeast homologue of U3 snRNA. EMBO J. 6:2145–2155.
  • Kief, D. R., and J. R. Warner. 1981. Coordinate control of syntheses of ribosomal ribonucleic acid and ribosomal proteins during nutritional shift-up in Saccharomyces cerevisiae. Mol. Cell. Biol. 1:1007–1015.
  • Kiss, T., C. Marshallsay, and W. Filipowicz. 1991. Alteration of the RNA polymerase specificity of U3 snRNA genes during evolution and in vitro. Cell 65:517–526.
  • Lee, J. Y., C. F. Evans, and D. R. Engelke. 1991. Expression of RNase P RNA of Saccharomyces cerevisiae is controlled by an unusual RNA polymerase III promoter. Proc. Natl. Acad. Sci. USA 88:6986–6990.
  • Lefebvre, O., J. Rüth, and A. Sentenac. 1994. A mutation in the largest subunit of yeast TFIIIC affects tRNA and 5S RNA synthesis. J. Biol. Chem. 269:23374–23381.
  • Li, Y., R. D. Moir, I. K. Sethy-Coraci, J. R. Warner, and I. M. Willis. 2000. Repression of ribosome and tRNA synthesis in secretion-defective cells is signaled by a novel branch of the cell integrity pathway. Mol. Cell. Biol. 20:3843–3851.
  • McKune, K., P. A. Moore, M. W. Hull, and N. A. Woychik. 1995. Six human RNA polymerase subunits functionally substitute for their yeast counterparts. Mol. Cell. Biol. 15:6895–6900.
  • Nomura, M.. 1999. Regulation of ribosome biosynthesis in Escherichia coli and Saccharomyces cerevisiae: diversity and common principles. J. Bacteriol. 181:6857–6864.
  • Nonet, M., C. Scafe, J. Sexton, and R. Young. 1987. Eukaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol. Cell. Biol. 7:1602–1611.
  • Oliver, S. G., and C. S. McLaughlin. 1977. The regulation of RNA synthesis in yeast: starvation experiments. Mol. Gen. Genet. 154:145–153.
  • Petko, L., and S. Lindquist. 1986. Hsp26 is not required for growth at high temperatures, nor for thermotolerance, spore development, or germination. Cell 45:885–894.
  • Rubin, G. M.. 1974. Preparation of RNA and ribosomes from yeast. Methods Cell Biol. 7:47–64.
  • Segall, J.. 1986. Assembly of a yeast 5S RNA gene transcription complex. J. Biol. Chem. 261:11578–11584.
  • Shpakovski, G. V.. 1994. The fission yeast Schizosaccharomyces pombe rpb6 gene encodes the common phosphorylated subunit of RNA polymerase and complements a mutation in the corresponding gene of Saccharomyces cerevisiae. Gene 147:63–69.
  • Shpakovski, G. V., J. Acker, M. Wintzerith, J. F. Lacroix, P. Thuriaux, and M. Vigneron. 1995. Four subunits shared by the three classes of RNA polymerases are functionally interchangeable between Homo sapiens and Saccharomyces cerevisiae. Mol. Cell. Biol. 15:4702–4710.
  • Shpakovski, G. V., O. Gadal, S. Labarre-Mariotte, E. N. Lebedenko, I. Miklos, H. Sakurai, S. A. Proshkin, V. Van Mullem, A. Ishihama, and P. Thuriaux. 2000. Functional conservation of RNA polymerase II in fission and budding yeasts. J. Mol. Biol. 295:1119–1127.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Smith, J. S., and J. D. Boeke. 1997. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11:241–254.
  • Stettler, S., S. Mariotte, M. Riva, A. Sentenac, and P. Thuriaux. 1992. An essential and specific subunit of RNA polymerase III(C) is encoded by gene RPC34 in Saccharomyces cerevisiae. J. Biol. Chem. 267:21390–21395.
  • Szymanski, M., T. Specht, M. Z. Barciszewska, J. Barciszewski, and V. A. Erdmann. 1998. 5S rRNA data bank. Nucleic Acids Res. 26:156–159.
  • Thuillier, V., I. Brun, A. Sentenac, and M. Werner. 1996. Mutations in the α-amanitin conserved domain of the largest subunit of yeast RNA polymerase III affect pausing, RNA cleavage and transcriptional transitions. EMBO J. 15:618–629.
  • Van Keulen, H., and D. Y. Thomas. 1982. A yeast transcription system for the 5S rRNA gene. Nucleic Acids Res. 10:5223–5238.
  • Venema, J., and D. Tollervey. 1995. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11:1629–1650.
  • Waldron, C., and F. Lacroute. 1975. Effect of growth rate on the amount of ribosomal and transfer ribonucleic acids in yeast. J. Bacteriol. 122:855–865.
  • Warner, J. R.. 1999. The economics of ribosome biosynthesis in yeast. Trends Biochem. Sci. 24:437–440.
  • White, R. J.. 1998. RNA polymerase III transcription, 2nd ed. 270 Springer Verlag, Berlin, Germany
  • Wittekind, M., J. Dodd, L. Vu, J. M. Kolb, J.-M. Buhler, A. Sentenac, and M. Nomura. 1988. Isolation and characterization of temperature-sensitive mutations in RPA190, the gene encoding the largest subunit of RNA polymerase I from Saccharomyces cerevisiae. Mol. Cell. Biol. 8:3997–4008.
  • Wittekind, M., J. M. Kolb, J. Dodd, M. Yamagishi, S. Mémet, J.-M. Buhler, and M. Nomura. 1990. Conditional expression of RPA190, the gene encoding the largest subunit of yeast RNA polymerase I: effects of decreased rRNA synthesis on ribosomal protein synthesis. Mol. Cell. Biol. 10:2049–2059.
  • Woychik, N. A.. 1998. Fractions to functions: RNA polymerase II thirty years later. Cold Spring Harbor Symp. Quant. Biol. 63:311–317.
  • Yuan, Y., and R. Reddy. 1991. 5′ flanking sequences of human MRP/7-2 RNA gene are required and sufficient for the transcription by RNA polymerase III. Biochim. Biophys. Acta 1089:33–39.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.