179
Views
448
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases

, , , , , & show all
Pages 289-297 | Received 28 Aug 2000, Accepted 05 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Beerli, R. R., D. J. Segal, B. Dreier, and C. F. Barbas III.. 1998. Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl. Acad. Sci. USA 95:14628–14633.
  • Bitinaite, J., D. A. Wah, A. K. Aggarwal, and I. Schildkraut. 1998. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95:10570–10575.
  • Capecchi, M. R.. 1989. Altering the genome by homologous recombination. Science 244:1288–1292.
  • Carroll, D.. 1999. DNA recombination and repair in Xenopus oocytes and eggs: substrate design, direct microinjection, and extract preparation. A comparative methods approach to the study of oocytes and embryos.. J. D. Richter. 173–195. Oxford University Press, New York, N.Y
  • Carroll, D.. 1996. Homologous genetic recombination in Xenopus: mechanism and implications for gene manipulation. Prog. Nucleic Acid Res. Mol. Biol. 54:101–125.
  • Carroll, D., S. H. Wright, R. K. Wolff, E. Grzesiuk, and E. B. Maryon. 1986. Efficient homologous recombination of linear DNA substrates after injection into Xenopus laevis oocytes. Mol. Cell. Biol. 6:2053–2061.
  • Chandrasegaran, S., and J. Smith. 1999. Chimeric restriction enzymes: what is next?. Biol. Chem. 380:841–848.
  • Choo, Y., and A. Klug. 1994. Toward a code for the interactions of zinc fingers with DNA: selection of randomized fingers displayed on phage. Proc. Natl. Acad. Sci. USA 91:11163–11167.
  • Choo, Y., I. Sanchez-Garcia, and A. Klug. 1994. In vivo repression by a site-specific DNA-binding protein designed against an oncogene sequence. Nature 372:642–645.
  • Choulika, A., A. Perrin, B. Dujon, and J.-F. Nicolas. 1995. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol. Cell. Biol. 15:1968–1973.
  • Cohen-Tannoudji, M., S. Robine, A. Choulika, D. Pinto, F. El Marjou, C. Babinet, D. Louvard, and F. Jaisser. 1998. I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol. Cell. Biol. 18:1444–1448.
  • Desjarlais, J. R., and J. M. Berg. 1992. Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc. Natl. Acad. Sci. USA 89:7345–7349.
  • Desjarlais, J. R., and J. M. Berg. 1993. Use of a zinc finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc. Natl. Acad. Sci. USA 90:2256–2260.
  • Elliott, B., C. Richardson, J. Winderbaum, J. A. Nickoloff, and M. Jasin. 1998. Gene conversion tracts from double-strand break repair in mammalian cells. Mol. Cell. Biol. 18:93–101.
  • Gargiulo, G., and A. Worcel. 1983. Analysis of the chromatin assembled in germinal vesicles of Xenopus oocytes. J. Mol. Biol. 170:699–722.
  • Greisman, H. A., and C. O. Pabo. 1997. A general strategy for selecting high-affinity zinc finger proteins for diverse DNA target sites. Science 275:657–661.
  • Huang, B., C. J. Schaeffer, Q. Li, and M.-D. Tsai. 1996. Sp1ase: a new class IIS zinc-finger restriction endonuclease with specificity for Sp1 binding sites. J. Protein Chem. 15:481–489.
  • Isalan, M., A. Klug, and Y. Choo. 1998. Comprehensive DNA recognition through concerted interactions from adjacent zinc fingers. Biochemistry 37:12026–12033.
  • Jamieson, A. C., S.-H. Kim, and J. A. Wells. 1994. In vitro selection of zinc fingers with altered DNA-binding specificity. Biochemistry 33:5689–5695.
  • Jasin, M.. 1996. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12:224–228.
  • Jeggo, P. A.. 1998. DNA breakage and repair. Adv. Genet. 38:185–218.
  • Jeong-Yu, S., and D. Carroll. 1992. Effect of terminal nonhomologies on homologous recombination in Xenopus laevis oocytes. Mol. Cell. Biol. 12:5426–5437.
  • Kim, C. A., and J. M. Berg. 1996. A 2.2 Å resolution crystal structure of a designed zinc finger protein bound to DNA. Nat. Struct. Biol. 3:940–945.
  • Kim, J.-S., J. Kim, K. L. Cepek, P. A. Sharp, and C. O. Pabo. 1997. Design of TATA box-binding protein/zinc finger fusions for targeted regulation of gene expression. Proc. Natl. Acad. Sci. USA 94:3616–3620.
  • Kim, J.-S., and C. O. Pabo. 1998. Getting a handhold on DNA: Design of poly-zinc finger proteins with femtomolar dissociation constants. Proc. Natl. Acad. Sci. USA 95:2812–2817.
  • Kim, Y.-G., J. Cha, and S. Chandrasegaran. 1996. Hybrid restriction enzymes: zinc finger fusions to FokI cleavage domain. Proc. Natl. Acad. Sci. USA 93:1156–1160.
  • Kim, Y.-G., and S. Chandrasegaran. 1994. Chimeric restriction endonuclease. Proc. Natl. Acad. Sci. USA 91:883–887.
  • Kim, Y.-G., P. S. Kim, A. Herbert, and A. Rich. 1997. Construction of a Z-DNA-specific restriction endonuclease. Proc. Natl. Acad. Sci. USA 94:12875–12879.
  • Kim, Y.-G., Y. Shi, J. M. Berg, and S. Chandrasegaran. 1997. Site-specific cleavage of DNA-RNA hybrids by zinc finger-FokI cleavage domain fusions. Gene 203:43–49.
  • Kim, Y.-G., J. Smith, M. Durgesha, and S. Chandrasegaran. 1998. Chimeric restriction enzyme: Gal4 fusion to FokI cleavage domain. Biol. Chem. 379:489–495.
  • Koller, B. H., and O. Smithies. 1992. Altering genes in animals by gene targeting. Annu. Rev. Immunol. 10:705–730.
  • Lieber, M. R.. 1999. The biochemistry and biological significance of nonhomologous DNA end joining: an essential repair process in multicellular organisms. Genes Cells 4:77–85.
  • Lin, F.-L., K. Sperle, and N. Sternberg. 1984. Model for homologous recombination during transfer of DNA into mouse L cells: role for the ends in the recombination process. Mol. Cell. Biol. 4:1020–1034.
  • Liu, Q., D. J. Segal, J. B. Ghiara, and C. F. Barbas III.. 1997. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94:5525–5530.
  • Maryon, E., and D. Carroll. 1991. Characterization of recombination intermediates from DNA injected into Xenopus laevis oocytes: evidence for a nonconservative mechanism of homologous recombination. Mol. Cell. Biol. 11:3278–3287.
  • Maryon, E., and D. Carroll. 1989. Degradation of linear DNA by a strand-specific exonuclease activity in Xenopus laevis oocytes. Mol. Cell. Biol. 9:4862–4871.
  • Nahon, E., and D. Raveh. 1998. Targeting a truncated Ho-endonuclease of yeast to novel DNA sites with foreign zinc fingers. Nucleic Acids Res. 26:1233–1239.
  • Osman, F., and S. Subramani. 1998. Double-strand break-induced recombination in eukaryotes. Prog. Nucleic Acid Res. Mol. Biol. 58:263–299.
  • Ozenberger, B., and G. S. Roeder. 1991. A unique pathway of double-strand break repair operates in tandemly repeated genes. Mol. Cell. Biol. 11:1222–1231.
  • Pâques, F., and J. E. Haber. 1999. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63:349–404.
  • Plessis, A., A. Perrin, J. E. Haber, and B. Dujon. 1992. Site-specific recombination determined by I-SceI, a mitochondrial group I intron-encoded endonuclease expressed in the yeast nucleus. Genetics 130:451–460.
  • Puchta, H., B. Dujon, and B. Hohn. 1993. Homologous recombination in plant cells is enhanced by in vivo induction of double strand breaks into DNA by a site-specific endonuclease. Nucleic Acids Res. 21:5034–5040.
  • Rebar, E. J., and C. O. Pabo. 1994. Zinc finger phage: affinity selection of fingers with new DNA-binding specificities. Science 263:671–673.
  • Richardson, C., M. E. Moynahan, and M. Jasin. 1998. Double-strand break repair by interchromosomal recombination: suppression of chromosomal translocations. Genes Dev. 12:3831–3842.
  • Rong, Y. S., and K. G. Golic. 2000. Gene targeting by homologous recombination in Drosophila. Science 288:2013–2018.
  • Rouet, P., F. Smith, and M. Jasin. 1994. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol. Cell. Biol. 14:8096–8106.
  • Rudin, N., and J. E. Haber. 1988. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8:3918–3928.
  • Segal, D. J., and D. Carroll. 1995. Endonuclease-induced, targeted homologous extrachromosomal recombination in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 92:806–810.
  • Segal, D. J., B. Dreier, R. R. Beerli, and C. F. Barbas III.. 1999. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN′-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96:2758–2763.
  • Shi, Y., and J. M. Berg. 1995. Specific DNA-RNA hybrid binding by zinc finger proteins. Science 268:282–284.
  • Smith, J., J. M. Berg, and S. Chandrasegaran. 1999. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res. 27:674–681.
  • Smith, J., M. Bibikova, F. G. Whitby, A. R. Reddy, S. Chandrasegaran, and D. Carroll. 2000. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28:3361–3369.
  • Subramani, S., and B. L. Seaton. 1988. Homologous recombination in mitotically dividing mammalian cells. Genetic recombination.. R. Kucherlapati, and G. R. Smith. 549–574. American Society for Microbiology, Washington, D.C.
  • Thomas, K. R., K. R. Folger, and M. R. Capecchi. 1986. High frequency targeting of genes to specific sites in the mammalian genome. Cell 44:419–428.
  • Wah, D. A., J. Bitinaite, I. Schildkraut, and A. K. Aggarwal. 1998. Structure of FokI has implications for DNA cleavage. Proc. Natl. Acad. Sci. USA 95:10564–10569.
  • Wah, D. A., J. A. Hirsch, L. F. Dorner, I. Schildkraut, and A. K. Aggarwal. 1997. Structure of the multimodal endonuclease FokI bound to DNA. Nature 388:97–100.
  • Widom, J.. 1998. Structure, dynamics, and function of chromatin in vitro. Annu. Rev. Biophys. Biomol. Struct. 27:285–327.
  • Wolfe, S. A., H. A. Greisman, E. I. Ramm, and C. O. Pabo. 1999. Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J. Mol. Biol. 285:1917–1934.
  • Wu, H., W.-P. Yang, and C. F. Barbas III.. 1995. Building zinc fingers by selection: toward a therapeutic application. Proc. Natl. Acad. Sci. USA 92:344–348.
  • Zheng, H., and J. H. Wilson. 1990. Gene targeting in normal and amplified cell lines. Nature 344:170–173.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.