19
Views
19
CrossRef citations to date
0
Altmetric
Cell Growth and Development

p45NFE2 Is a Negative Regulator of Erythroid Proliferation Which Contributes to the Progression of Friend Virus-Induced Erythroleukemias

, , , , , & show all
Pages 73-80 | Received 28 Jun 2000, Accepted 16 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Andrews, N. C., H. Erdjument-Bromage, M. B. Davidson, P. Tempst, and S. H. Orkin. 1993. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362:722–728.
  • Andrews, N. C., K. J. Kotkow, P. A. Ney, H. Erdjument-Bromage, P. Tempst, and S. H. Orkin. 1993. The ubiquitous subunit of erythroid transcription factor NF-E2 is a small basic-leucine zipper protein related to the v-maf oncogene. Proc. Natl. Acad. Sci. USA 90:11488–11492.
  • Ben-David, Y., and A. Bernstein. 1991. Friend virus-induced erythroleukemia and the multistage nature of cancer. Cell 66:831–834.
  • Ben-David, Y., E. B. Giddens, and A. Bernstein. 1990. Identification and mapping of a common proviral integration site Fli-1 in erythroleukemia cells induced by Friend murine leukemia virus. Proc. Natl. Acad. Sci. USA 87:1332–1336.
  • Ben-David, Y., E. G. Giddens, K. Letwin, and A. Bernstein. 1991. Erythroleukemia induction by Friend murine leukemia virus: insertional activation of a new member of the ets gene family, Fli-1, closely linked to c-ets-1. Genes Dev. 5:908–918.
  • Ben-David, Y., A. Lavigueur, G. Y. Cheong, and A. Bernstein. 1990. Insertional inactivation of the p53 gene during Friend leukemia: a new strategy for identifying tumor suppressor genes. New Biol. 2:1015–1023.
  • Ben-David, Y., V. R. Prideaux, V. Chow, S. Benchimol, and A. Bernstein. 1988. Inactivation of the p53 oncogene by internal deletion or retroviral integration in erythroleukemic cell lines induced by Friend leukemia virus. Oncogene 3:179–185.
  • Chow, V., Y. Ben-David, A. Bernstein, S. Benchimol, and M. Mowat. 1987. Multi-stage Friend erythroleukemia: independent origin of tumor clones with normal or rearranged p53 cellular oncogenes. J. Virol. 61:2777–2781.
  • Deveaux, S., S. Cohen-Kaminsky, R. A. Shivdasani, N. C. Andrews, A. Filipe, I. Kuzniak, S. H. Orkin, P. H. Romeo, and V. Mignotte. 1997. p45 NF-E2 regulates expression of thromboxane synthase in megakaryocytes. EMBO J. 16:5654–5661.
  • Hicks, G. G., and M. Mowat. 1988. Integration of Friend murine leukemia virus into both alleles of the p53 oncogene in an erythroleukemia cell line. J. Virol. 62:4752–4755.
  • Howard, J. C., Y. Ung, D. Adachi, and Y. Ben-David. 1996. p53-independent tumor growth and in vitro cell survival for F-MuLV-induced erythroleukemias. Cell Growth Differ. 7:1651–1660.
  • Howard, J. C., S. Yousefi, G. Cheong, A. Bernstein, and Y. Ben-David. 1993. Temporal order and functional analysis of mutations within the Fli-1 and p53 genes during the erythroleukemias induced by F-MuLV. Oncogene 8:2721–2729.
  • Igarashi, K., K. Kataoka, K. Itoh, N. Hayashi, M. Nishizawa, and M. Yamamoto. 1994. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 367:568–572.
  • Jenkins, J. R., K. Rudge, S. Redomond, and A. Wade-Evans. 1984. Cloning and expression analysis of full length mouse cDNA sequences encoding the transformation associated protein p53. Nucleic Acids Res. 12:5609–5626.
  • Kotkow, K. J., and S. H. Orkin. 1995. Dependence of globin gene expression in mouse erythroleukemia cells on the NF-E2 heterodimer. Mol. Cell. Biol. 15:4640–4647.
  • Levin, J., J. P. Peng, G. R. Baker, J. L. Villeval, P. Lecine, S. A. Burstein, and R. A. Shivdasani. 1999. Pathophysiology of thrombocytopenia and anemia in mice lacking transcription factor NF-E2. Blood 94:3037–3047.
  • Lu, S. J., S. Rowan, M. R. Bani, and Y. Ben-David. 1994. Retroviral integration within the FLi-2 locus results in inactivation of the erythroid transcription factor NF-E2 in Friend erythroleukemias: evidence that NF-E2 is essential for globin expression. Proc. Natl. Acad. Sci. USA 91:8398–8402.
  • Markowitz, D., S. Goff, and A. Bank. 1988. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62:1120–1124.
  • Mignotte, V., L. Wall, E. deBoer, F. Grosveld, and P. H. Romeo. 1989. Two tissue-specific factors bind the erythroid promoter of the human porphobilinogen deaminase gene. Nucleic Acids Res. 17:37–54.
  • Moreau-Gachelin, F., A. Tavitian, and P. Tambourin. 1988. Spi-1 is a putative oncogene in virally induced murine erythroleukemias. Nature 331:277–280.
  • Mowat, M., A. Cheng, N. Kimura, A. Bernstein, and S. Benchimol. 1985. Rearrangements of the cellular p53 gene in erythroleukemic cells transformed by Friend virus. Nature 314:633–636.
  • Munroe, D. G., J. W. Peacock, and S. Benchimol. 1990. Inactivation of the cellular p53 gene is a common feature of Friend erythroleukemia: relation to dominant transforming alleles. Mol. Cell. Biol. 10:3307–3313.
  • Ney, P. A., B. P. Sorrentino, C. H. Lowrey, and A. W. Nienhuis. 1990. Inducibility of the HS II enhancer depends on binding of an erythroid specific nuclear protein. Nucleic Acids Res. 18:6011–6017.
  • Nosaka, T., T. Kawashima, K. Misawa, K. Ikuta, A. L. Mui, and T. Kitamura. 1999. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. EMBO J. 18:4754–4765.
  • Orkin, S. H.. 1990. Globin gene regulation and switching: circa 1990. Cell 63:665–672.
  • Shibuya, T., and T. Mak. 1983. Isolation and induction of erythroleukemic cell lines with properties of erythroid progenitor burst-forming cell (BFU-E) and erythroid precursor cell (CFU-E). Proc. Natl. Acad. Sci. USA 80:3721–3725.
  • Shivdasani, R. A., and S. H. Orkin. 1995. Erythropoiesis and globin gene expression in mice lacking the transcription factor NF-E2. Proc. Natl. Acad. Sci. USA 92:8690–8694.
  • Shivdasani, R. A., M. F. Rosenblatt, D. Zucker-Franklin, C. W. Jackson, P. Hunt, C. J. M. Saris, and S. H. Orkin. 1995. Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81:695–704.
  • Taketani, S., J. Inazawa, Y. Nakahashi, T. Abe, and R. Tokunaga. 1992. Structure of the human ferrochetalase gene: exon/intron gene organization and location of the gene to chromosome 18. Eur. J. Biochem. 205:217–222.
  • Talbot, D., and F. Grosveld. 1991. The 5 prime HS2 of the globin locus control region enhances transcription through the interaction of a multimeric complex binding at two functionally distinct NF-E2 binding sites. EMBO J. 10:1391–1398.
  • Talbot, D., S. Philipsen, P. Fraser, and F. Grosveld. 1990. Detailed analysis of the site 3 region of the human beta-globin dominant control region. EMBO J. 9:2169–2178.
  • Tamir, A., J. Howard, R. R. Higgins, Y. J. Li, L. Berger, E. Zacksenhaus, M. Reis, and Y. Ben-David. 1999. Fli-1, an ets-related transcription factor, regulates erythropoietin-induced erythroid proliferation and differentiation: evidence for direct transcriptional repression of the Rb gene during differentiation. Mol. Cell. Biol. 19:4452–4464.
  • Tsai, S., S. Bartelmez, E. Sitnicka, and S. Collins. 1994. Lymphohematopoietic progenitors immortalized by a retroviral vector harboring a dominant-negative retinoic acid receptor can recapitulate lymphoid, myeloid, and erythroid development. Genes Dev. 8:2831–2841.
  • Tugores, A., S. T. Magness, and D. A. Brenner. 1994. A single promoter directs both housekeeping and erythroid preferential expression of the human ferrochelatase gene. J. Biol. Chem. 269:30789–30797.
  • Wong, K. S., Y. J. Li, J. Howard, and Y. Ben-David. 1999. Loss of p53 in F-MuLV induced-erythroleukemias accelerates the acquisition of mutational events that confers immortality and growth factor independence. Oncogene 18:5525–5534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.