66
Views
48
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Reciprocal Activation by Cyclin-Dependent Kinases 2 and 7 Is Directed by Substrate Specificity Determinants outside the T Loop

, , , , &
Pages 88-99 | Received 05 Oct 2000, Accepted 11 Oct 2000, Published online: 28 Mar 2023

REFERENCES

  • Aprelikova, O., Y. Xiong, and E. T. Liu. 1995. Both p16 and p21 families of cyclin-dependent kinase (CDK) inhibitors block the phosphorylation of cyclin-dependent kinases by the CDK-activating kinase. J. Biol. Chem. 270:18195–18197.
  • Beaudette, K. N., J. Lew, and J. H. Wang. 1993. Substrate specificity characterization of a cdc2-like protein kinase purified from bovine brain. J. Biol. Chem. 268:20825–20830.
  • Boyle, W. J., P. van der Geer, and T. Hunter. 1991. Phosphopeptide mapping and phosphoamino acid analysis by two-dimensional separation on thin-layer cellulose plates. Methods Enzymol. 201:110–149.
  • Corden, J. L.. 1990. Tails of RNA polymerase II. Trends Biochem. Sci. 15:383–387.
  • Cross, F. R., and K. Levine. 1998. Molecular evolution allows bypass of the requirement for activation loop phosphorylation of the Cdc28 cyclin-dependent kinase. Mol. Cell. Biol. 18:2923–2931.
  • Desai, D., Y. Gu, and D. O. Morgan. 1992. Activation of human cyclin-dependent kinases in vitro. Mol. Biol. Cell 3:571–582.
  • Devault, A., A.-M. Martinez, D. Fesquet, J.-C. Labbé, N. Morin, J.-C. Cavadore, and M. Dorée. 1995. MAT1 (‘ménage à trois’), a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J. 14:5027–5036.
  • Espinoza, F. H. E., A. Farrell, J. L. Nourse, H. M. Chamberlin, O. Gileadi, and D. O. Morgan. 1998. Cak1 is required for Kin28 phosphorylation and activation in vivo. Mol. Cell. Biol. 18:6365–6373.
  • Feaver, W. J., J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109.
  • Fesquet, D., J.-C. Labbé, J. Derancourt, J.-P. Capony, S. Galas, F. Girard, T. Lorca, J. Shuttleworth, M. Dorée, and J.-C. Cavadore. 1993. The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J. 12:3111–3121.
  • Fisher, R. P.. 1997. Reconstitution of mammalian CDK-activating kinase. Methods Enzymol. 283:256–270.
  • Fisher, R. P., P. Jin, H. M. Chamberlin, and D. O. Morgan. 1995. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83:47–57.
  • Fisher, R. P., and D. O. Morgan. 1994. A novel cyclin associates with MO15/CDK7 to form the CDK-activating kinase. Cell 78:713–724.
  • Gu, Y., J. Rosenblatt, and D. O. Morgan. 1992. Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J. 11:3995–4005.
  • Hanks, S. K., and A. M. Quinn. 1991. Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol. 200:38–62.
  • Harper, J. W., and S. J. Elledge. 1998. The role of Cdk7 in CAK function, a retro-retrospective. Genes Dev. 12:285–289.
  • Hermand, D., A. Pihlak, T. Westerling, V. Damagnez, J. Vandenhaute, G. Cottarel, and T. P. Mäkelä. 1998. Fission yeast Csk1 is a CAK-activating kinase (CAKAK). EMBO J. 17:7230–7238.
  • Holmes, J. K., and M. J. Solomon. 1996. A predictive scale for evaluating cyclin-dependent kinase substrates. A comparison of p34cdc2 and p33cdk2. J. Biol. Chem. 271:25240–25246.
  • Jeffrey, P. D., A. A. Russo, K. Polyak, E. Gibbs, J. Hurwitz, J. Massagué, and N. P. Pavletich. 1995. Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376:313–320.
  • Kaldis, P.. 1999. The cdk-activating kinase (CAK): from yeast to mammals. Cell. Mol. Life Sci. 55:284–296.
  • Kimmelman, J., P. Kaldis, C. J. Hengartner, G. M. Laff, S. S. Koh, R. A. Young, and M. J. Solomon. 1999. Activating phosphorylation of the kin28p subunit of yeast TFIIH by cak1p. Mol. Cell. Biol. 19:4774–4787.
  • Kumagai, A., and W. G. Dunphy. 1995. Control of the Cdc2/cyclin B complex in Xenopus egg extracts arrested at a G2/M checkpoint with DNA synthesis inhibitors. Mol. Biol. Cell 6:199–213.
  • Kunkel, T. A.. 1985. Rapid and efficient site-directed mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • Labbé, J.-C., A.-M. Martinez, D. Fesquet, J.-P. Capony, J.-M. Darbon, J. Derancourt, A. Devault, N. Morin, J.-C. Cavadore, and M. Dorée. 1994. p40MO15 associates with a p36 subunit and requires both nuclear translocation and Thr176 phosphorylation to generate cdk-activating kinase activity in Xenopus oocytes. EMBO J. 13:5155–5164.
  • Larochelle, S., J. Pandur, R. P. Fisher, H. K. Salz, and B. Suter. 1998. Cdk7 is essential for mitosis and for in vivo Cdk-activating kinase activity. Genes Dev. 12:370–381.
  • Lee, K. M., J. E. Saiz, W. A. Barton, and R. P. Fisher. 1999. Cdc2 activation in fission yeast depends on Mcs6 and Csk1, two partially redundant Cdk-activating kinases (CAKs). Curr. Biol. 9:441–444.
  • Mäkelä, T. P., J.-P. Tassan, E. A. Nigg, S. Frutiger, G. J. Hughes, and R. A. Weinberg. 1994. A cyclin associated with the CDK-activating kinase MO15. Nature 371:254–257.
  • Martinez, A.-M., M. Afshar, F. Martin, J.-C. Cavadore, J.-C. Labbé, and M. Dorée. 1997. Dual phosphorylation of the T-loop in cdk7: its role in controlling cyclin H binding and CAK activity. EMBO J. 16:343–354.
  • Matsuoka, M., J. Kato, R. P. Fisher, D. O. Morgan, and C. J. Sherr. 1994. Activation of cyclin-dependent kinase-4 (CDK4) by mouse MO15-associated kinase. Mol. Cell. Biol. 14:7265–7275.
  • Molz, L., and D. Beach. 1993. Characterization of the fission yeast mcs2 cyclin and its associated protein kinase activity. EMBO J. 12:1723–1732.
  • Moreno, S., and P. Nurse. 1990. Substrates for p34cdc2: in vivo veritas?. Cell 61:549–551.
  • Morgan, D. O.. 1997. Cyclin-dependent kinases: engines, clocks and microprocessors. Annu. Rev. Cell Dev. Biol. 13:261–291.
  • O'Reilly, D. R., L. K. Miller, and V. A. Luckow. 1993. Baculovirus expression vectors: a laboratory manual. W. H. Freeman and Co., New York, N.Y
  • Poon, R. Y. C., K. Yamashita, J. P. Adamczewski, T. Hunt, and J. Shuttleworth. 1993. The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J. 12:3123–3132.
  • Poon, R. Y. C., K. Yamashita, M. Howell, M. A. Ershler, A. Belyavsky, and T. Hunt. 1994. Cell cycle regulation of the p34cdc2/p33cdk2-activating kinase p40MO15. J. Cell Sci. 107:2789–2799.
  • Rickert, P., J. L. Corden, and E. Lees. 1999. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. Oncogene 18:1093–1102.
  • Rosenblatt, J., H. De Bondt, J. Jancarik, D. O. Morgan, and S.-H. Kim. 1993. Purification and crystallization of human cyclin-dependent kinase 2. J. Mol. Biol. 230:1317–1319.
  • Rosenblatt, J., Y. Gu, and D. O. Morgan. 1992. Human cyclin-dependent kinase 2 (CDK2) is activated during the S and G2 phases of the cell cycle and associates with cyclin A. Proc. Natl. Acad. Sci. USA 89:2824–2828.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermuelen, J.-P. Tassan, L. Schaeffer, E. A. Nigg, J. H. J. Hoeijmakers, and J.-M. Egly. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101.
  • Russo, A. A.. 1997. Purification and reconstitution of cyclin-dependent kinase 2 in four states of activity. Methods Enzymol. 283:3–12.
  • Russo, A. A., P. D. Jeffrey, and N. P. Pavletich. 1996. Structural basis of cyclin-dependent kinase activation by phosphorylation. Nat. Struct. Biol. 3:696–700.
  • Schulman, B. A., D. L. Lindstrom, and E. Harlow. 1998. Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc. Natl. Acad. Sci. USA 95:10453–10458.
  • Serizawa, H., T. P. Mäkelä, J. W. Conaway, R. C. Conaway, R. A. Weinberg, and R. A. Young. 1995. Association of Cdk-activating kinase subunits with transcription factor TFIIH. Nature 374:280–282.
  • Shiekhattar, R., F. Mermelstein, R. P. Fisher, R. Drapkin, B. Dynlacht, H. C. Wessling, D. O. Morgan, and D. Reinberg. 1995. Cdk-activating kinase (CAK) complex is a component of human transcription factor IIH. Nature 374:283–287.
  • Solomon, M. J., J. W. Harper, and J. Shuttleworth. 1993. CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J. 12:3133–3142.
  • Songyang, Z., S. Blechner, N. Hoagland, M. F. Hoekstra, H. Piwnica-Worms, and L. C. Cantley. 1994. Use of an oriented peptide library to determine the optimal substrates of protein kinases. Curr. Biol. 4:973–982.
  • Tassan, J.-P., M. Jaquenod, A. M. Fry, S. Frutiger, G. Hughes, and E. A. Nigg. 1995. In vitro assembly of a functional human cdk7/cyclin H complex requires MAT1, a novel 36 kD RING finger protein. EMBO J. 14:5608–5617.
  • Tassan, J.-P., M. Jaquenoud, P. Léopold, S. J. Schultz, and E. A. Nigg. 1995. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc. Natl. Acad. Sci. USA 92:8871–8875.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.