24
Views
46
CrossRef citations to date
0
Altmetric
Gene Expression

Interaction between hnRNPA1 and IκBα Is Required for Maximal Activation of NF-κB-Dependent Transcription

, , &
Pages 3482-3490 | Received 30 Oct 2000, Accepted 20 Feb 2001, Published online: 28 Mar 2023

REFERENCES

  • Arenzana-Seisdedos, F., J. Thompson, M. S. Rodriguez, F. Bachelerie, D. Thomas, and R. T. Hay. 1995. Inducible nuclear expression of newly synthesized IκBα negatively regulates DNA-binding and transcriptional activities of NF-κB. Mol. Cell. Biol. 15:2689–2696.
  • Arenzana-Seisdedos, F., P. Turpin, M. Rodriguez, D. Thomas, R. T. Hay, J. L. Virelizier, and C. Dargemont. 1997. Nuclear localization of IκBα promotes active transport of NF-κB from the nucleus to the cytoplasm. J. Cell Sci. 110:369–378.
  • Baeuerle, P. A., and D. Baltimore. 1996. NF-κB: ten years after. Cell 87:13–20.
  • Baldi, L., K. Brown, G. Franzoso, and U. Siebenlist. 1996. Critical role for lysines 21 and 22 in signal-induced, ubiquitin-mediated proteolysis of IκBα. J. Biol. Chem. 271:376–379.
  • Baldwin, A. S.. 1996. The NF-κB and IκB proteins: new discoveries and insights. Annu. Rev. Immunol. 14:649–683.
  • Beauparlant, P., R. T. Lin, and J. Hiscott. 1996. The role of the C-terminal domain of IκBα in protein degradation and stabilization. J. Biol. Chem. 271:10690–10696.
  • Ben-David, Y., M. R. Bani, B. Chabot, A. De Koven, and A. Bernstein. 1992. Retroviral insertions downstream of the heterogeneous nuclear ribonucleoprotein A1 gene in erythroleukemia cells: evidence that A1 is not essential for cell growth. Mol. Cell. Biol. 12:4449–4455.
  • Brockman, J. A., D. C. Scherer, T. A. McKinsey, S. M. Hall, X. X. Qi, W. Y. Lee, and D. W. Ballard. 1995. Coupling of a signal response domain in IκBα to multiple pathways for NF-κB activation. Mol. Cell. Biol. 15:2809–2818.
  • Brown, K., G. Franzoso, L. Baldi, L. Carlson, L. Mills, Y. C. Lin, S. Gerstberger, and U. Siebenlist. 1997. The signal response of IκBα is regulated by transferable N-and C-terminal domains. Mol. Cell. Biol. 17:3021–3027.
  • Brown, K., S. Gerstberger, L. Carlson, G. Franzoso, and U. Siebenlist. 1995. Control of IκBα proteolysis by site-specific, signal-induced phosphorylation. Science 267:1485–1488.
  • Buvoli, M., F. Cobianchi, M. G. Beśtagno, A. Mangiarotti, M. T. Bassi, G. Biamonti, and S. Riva. 1990. Alternative splicing in the human gene for the core protein A1 generates another hnRNP protein. EMBO J. 9:1229–1235.
  • Caceres, J. F., S. Stamm, D. M. Helfman, and A. R. Krainer. 1994. Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265:1706–1709.
  • Carlotti, F., S. K. Dower, and E. E. Qwarnstrom. 2000. Dynamic shuttling of NF-κB between the nucleus and cytoplasm as a consequence of inhibitor dissociation. J. Biol. Chem. 275:41028–41034.
  • Desterro, J. M. P., M. S. Rodriguez, G. D. Kemp, and R. T. Hay. 1999. Identification of the enzyme required for activation of the small ubiquitin-like protein SUMO-1. J. Biol. Chem. 274:10618–10624.
  • Desterro, J. M. P., J. Thomson, and R. T. Hay. 1997. Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett. 417:297–300.
  • DiDonato, J. A., M. Hayakawa, D. M. Rothwarf, E. Zandi, and M. Karin. 1997. A cytokine responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554.
  • Dreyfuss, G., M. J. Matunis, S. Pinol-Roma, and C. G. Burd. 1993. hnRNP proteins and the biogenesis of mRNA. Annu. Rev. Biochem. 62:289–321.
  • Durfee, T., K. Becherer, P. L. Chen, S. H. Yeh, Y. Yang, A. E. Kilburn, W. H. Lee, and S. J. Elledge. 1993. The retinoblastoma protein associates with the protein phosphatase type 1 catalytic subunit. Genes Dev. 7:555–569.
  • Fornerod, M., M. Ohno, M. Yoshida, and I. W. Mattaj. 1997. CRM1 is an export receptor for leucine-rich nuclear export signals. Cell 90:1051–1060.
  • Fornerod, M., J. van Deursen, S. van Baal, A. Reynolds, D. Davis, K. G. Murti, J. Fransen, and G. Grosveld. 1997. The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J. 16:807–816.
  • Fukuda, M., S. Asano, T. Nakamura, M. Adachi, M. Yoshida, M. Yanagida, and E. Nishida. 1997. CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390:308–311.
  • Hanke, T., P. Szawlowski, and R. E. Randall. 1992. Construction of solid matrix-antibody-antigen complexes containing simian immunodeficiency virus p27 using tag-specific monoclonal antibody and tag-linked antigen. J. Gen. Virol. 73:653–660.
  • Harhaj, E. W., and S. C. Sun. 1999. Regulation of RelA subcellular localization by a putative nuclear export signal and p50. Mol. Cell. Biol. 19:7088–7095.
  • Harlow, E., and D. P. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Haskill, S., A. A. Beg, S. M. Tompkins, J. S. Morris, A. D. Yurochko, A. Sampson-Johannes, K. Mondal, P. Ralph, and A. S. Baldwin. 1991. Characterization of an immediate-early gene induced in adherent monocytes that encodes IκBα like activity. Cell 65:1281–1289.
  • Hatakeyama, S., M. Kitagawa, K. Nakayama, M. Shirane, M. Matsumoto, K. Hattori, H. Higashi, H. Nakano, K. Okumura, K. Onoe, R. A. Good, and K. Nakayama. 1999. Ubiquitin-dependent degradation of IκBα is mediated by a ubiquitin ligase Skp1/Cul 1/F-box protein FWD1. Proc. Natl. Acad. Sci. USA 96:3859–3863.
  • Hay, R. T., L. Vuillard, J. M. Desterro, and M. S. Rodriguez. 1999. Control of NF-κB transcriptional activation by signal induced proteolysis of IκBα. Philos. Trans. R. Soc. Lond. B Biol. Sci. 354:1601–1609.
  • Huang, T. T., N. Kudo, M. Yoshida, and S. Miyamoto. 2000. A nuclear export signal in the N-terminal regulatory domain of IκBα controls cytoplasmic localization of inactive NF-κB/IκBα complexes. Proc. Natl. Acad. Sci. USA 97:1014–1019.
  • Izaurralde, E., A. Jarmolowski, C. Beisel, I. W. Mattaj, G. Dreyfuss, and U. Fischer. 1997. A role for the M9 transport signal of hnRNPA1 in mRNA nuclear export. J. Cell Biol. 137:27–35.
  • Jaffray, E., K. M. Wood, and R. T. Hay. 1995. Domain organization of IκBα and sites of interaction with NF-κB p65. Mol. Cell. Biol. 15:2166–2172.
  • Jayaraman, P. S., K. Hirst, and C. R. Goding. 1994. The activation domain of a basic helix-loop-helix protein is masked by repressor interaction with domains distinct from that required for transcription regulation. EMBO J. 13:2192–2199.
  • Johnson, C., D. Van Antwerp, and T. J. Hope. 1999. An N-terminal nuclear export signal is required for the nucleocytoplasmic shuttling of IκBα. EMBO J. 18:6682–6693.
  • Kiledjian, M., and G. Dreyfuss. 1992. Primary structure and binding activity of the hnRNP U protein: binding RNA through RGG box. EMBO J. 11:2655–2664.
  • Kroll, M., M. Conconi, M. J. Desterro, A. Marin, D. Thomas, B. Friguet, R. T. Hay, J. L. Virelizier, F. Arenzana-Seisdedos, and M. S. Rodriguez. 1997. The carboxy terminus of IκBα determines susceptibility to degradation by the catalytic core of the proteasome. Oncogene 15:1841–1850.
  • Luque, I., W. Zong, C. Chen, and C. Gelinas. 2000. N-terminal determinants of IκBα necessary for the cytoplasmic regulation of c-Rel. Oncogene 19:1239–1244.
  • Mayeda, A., and A. R. Krainer. 1992. Regulation of alternative pre-mRNA splicing by hnRNPA1 and splicing factor SF2. Cell 68:365–375.
  • Mayeda, A., S. H. Munroe, J. F. Caceres, and A. R. Krainer. 1994. Function of conserved domains of hnRNPA1 and other hnRNP A/B proteins. EMBO J. 13:5483–5495.
  • Mercurio, F., H. Zhu, B. W. Murray, A. Shevchenko, B. L. Bennett, J. W. Li, D. B. Young, M. Barbosa, M. Mann, A. Manning, and A. Rao. 1997. IKK-1 and IKK-2: cytokine activated IκB kinases essential for NF-κB activation. Science 278:860–866.
  • Michael, W. M., M. Choi, and G. Dreyfuss. 1995. A nuclear export signal in hnRNPA1: a signal mediated, temperature dependent nuclear protein export pathway. Cell 83:415–422.
  • Michael, W. M., H. Siomi, M. Choi, S. Pinol-Roma, S. Nakielny, Q. Liu, and G. Dreyfuss. 1995. Signal sequences that target nuclear import and nuclear export of pre-mRNA-binding proteins. Cold Spring Harb. Symp. Quant. Biol. 60:663–668.
  • Munroe, S. H., and X. F. Dong. 1992. Heterogeneous nuclear ribonucleoprotein A1 catalyzes RNA. RNA annealing. Proc. Natl. Acad. Sci. USA 89:895–899.
  • Ohno, H., G. Takimoto, and T. W. McKeithan. 1990. The candidate proto-oncogene bcl-3 is related to genes implicated in cell lineage determination of cell cycle control. Cell 60:991–997.
  • Ohta, T., J. J. Michel, A. J. Schottelius, and Y. Xiong. 1999. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3:535–541.
  • Ossareh-Nazari, B., F. Bachelerie, and C. Dargemont. 1997. Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278:141–144.
  • Pinol-Roma, S., and G. Dreyfuss. 1992. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature 355:730–732.
  • Pontius, B. W., and P. Berg. 1992. Rapid assembly and disassembly of complementary DNA strands through an equilibrium intermediate state mediated by A1 hnRNP protein. J. Biol. Chem. 267:13815–13818.
  • Regnier, C. H., H. Y. Song, X. Gao, D. V. Goeddel, Z. D. Cao, and M. Rothe. 1997. Identification and characterization of an IκB kinase. Cell 90:373–383.
  • Renard, P., Y. Percherancier, M. Kroll, D. Thomas, J. L. Virelizier, F. Arenzana-Seisdedos, and F. Bachelerie. 2000. Inducible NF-κB activation is permitted by simultaneous degradation of nuclear IκBα. J. Biol. Chem. 275:15193–15199.
  • Rodriguez, M. S., I. Michalopoulos, F. Arenzanaseisdedos, and R. T. Hay. 1995. Inducible degradation of IκBα in vitro and in vivo requires the acidic C-terminal domain of the protein. Mol. Cell. Biol. 15:2413–2419.
  • Rodriguez, M. S., J. Thompson, R. T. Hay, and C. Dargemont. 1999. Nuclear retention of IκBα protects it from signal-induced degradation and inhibits NF-κB transcriptional activation. J. Biol. Chem. 274:9108–9115.
  • Rodriguez, M. S., J. Wright, J. Thompson, D. Thomas, F. Baleux, J. L. Virelizier, R. T. Hay, and F. Arenzana-Seisdedos. 1996. Identification of lysine residues required for signal-induced ubiquitination and degradation of IκBα in vivo. Oncogene 12:2425–2435.
  • Roff, M., J. Thomson, M. S. Rodriguez, J.-M. Jacque, F. Baleux, F. Arenzana-Seisdedos, and R. T. Hay. 1996. Role of IκBα ubiquitination in signal-induced activation of NF-κB in vivo. J. Biol. Chem. 271:7844–7850.
  • Sachdev, S., S. Bagchi, D. D. Zhang, A. C. Mings, and M. Hannink. 2000. Nuclear import of IκBα is accomplished by a ran-independent transport pathway. Mol. Cell. Biol. 20:1571–1582.
  • Sachdev, S., A. Hoffmann, and M. Hannink. 1998. Nuclear localization of IκBα is mediated by the second ankyrin repeat: the IκBα ankyrin repeats define a novel class of cis-acting nuclear import sequences. Mol. Cell. Biol. 18:2524–2534.
  • Scherer, D. C., J. A. Brockman, Z. Chen, T. Maniatis, and D. W. Ballard. 1995. Signal-induced degradation of IκBα requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–11263.
  • Spencer, E., J. Jiang, and Z. J. Chen. 1999. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13:284–294.
  • Stade, K., C. S. Ford, C. Guthrie, and K. Weis. 1997. Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050.
  • Stark, L. A., and R. T. Hay. 1998. Human immunodeficiency virus type 1 (HIV-1) viral protein R (Vpr) interacts with Lys-tRNA synthetase: implications for priming of HIV-1 reverse transcription. J. Virol. 72:3037–3044.
  • Sun, S. C., J. Elwood, and W. C. Greene. 1996. Both amino-terminal and carboxyl-terminal sequences within IκBα regulate its inducible degradation. Mol. Cell. Biol. 16:1058–1065.
  • Sylla, B. S., S. C. Hung, D. M. Davidson, E. Hatzivassiliou, N. L. Malinin, D. Wallach, T. D. Gilmore, E. Kieff, and G. Mosialos. 1998. Epstein-Barr virus-transforming protein latent infection membrane protein 1 activates transcription factor NF-κB through a pathway that includes the NF-κB-inducing kinase and the IκB kinases IKKalpha and IKKbeta. Proc. Natl. Acad. Sci. USA 95:10106–10111.
  • Tam, W. F., L. H. Lee, L. Davis, and R. Sen. 2000. Cytoplasmic sequestration of rel proteins by IκBα requires CRM1-dependent nuclear export. Mol. Cell. Biol. 20:2269–2284.
  • Tan, P., S. Y. Fuchs, A. Chen, K. Wu, C. Gomez, Z. Ronai, and Z. Q. Pan. 1999. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of IκBα. Mol. Cell 3:527–533.
  • Thompson, J. E., R. J. Phillips, H. Erdjument-Bromage, P. Tempst, and S. Ghosh. 1995. IκBβ regulates the persistent response in a biphasic activation of NF-κB. Cell 80:573–582.
  • Traenckner, E.B.M., H. L. Pahl, T. Henkel, K. N. Schmidt, S. Wilk, and P. A. Baeuerle. 1995. Phosphorylation of human IκBα on serine 32 and serine 36 controls IκBα proteolysis and NF-κB activation in response to diverse stimuli. EMBO J. 14:2876–2883.
  • Turpin, P., R. T. Hay, and C. Dargemont. 1999. Characterisation of the IκBα nuclear import pathway. J. Biol. Chem. 274:6804–6812.
  • Visa, N., A. T. Alzhanova-Ericsson, X. Sun, E. Kiseleva, B. Bjorkroth, T. Wurtz, and B. Daneholt. 1996. A pre-mRNA-binding protein accompanies the RNA from the gene through the nuclear pores and into polysomes. Cell 84:253–264.
  • Vuillard, L., J. Nicholson, and R. T. Hay. 1999. A complex containing β-TrCP recruits Cdc34 to catalyse ubiquitination of IκBα. FEBS Lett. 455:311–314.
  • Whiteside, S. T., J.-C. Epinat, N. R. Rice, and A. Israel. 1997. IκB epsilon, a novel member of the IκB family, controls RelA and c-Rel NF-κB activity. EMBO J. 16:1413–1426.
  • Whiteside, S. T., M. K. Ernst, O. Lebail, C. Laurentwinter, N. Rice, and A. Israel. 1995. N-terminal and C-terminal sequences control degradation of Mad3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15:5339–5345.
  • Winston, J. T., P. Strack, P. Beer-Romero, C. Y. Chu, S. J. Elledge, and J. W. Harper. 1999. The SCF β-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IκBα and β-catenin and stimulates IκBα ubiquitination in vitro. Genes Dev. 13:270–283.
  • Woronicz, J. D., X. Gao, Z. Cao, M. Rothe, and D. V. Goeddel. 1997. IκB kinase-beta: NF-κB activation and complex formation with IκB kinase-alpha and NIK. Science 278:866–869.
  • Xu, R. M., L. Jokhan, X. Cheng, A. Mayeda, and A. R. Krainer. 1997. Crystal structure of human UP1, the domain of hnRNPA1 that contains two RNA-recognition motifs. Structure 5:559–570.
  • Yang, X., M. R. Bani, S. J. Lu, S. Rowan, Y. Ben-David, and B. Chabot. 1994. The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 5′ splice site selection in vivo. Proc. Natl. Acad. Sci. USA 91:6924–6928.
  • Yaron, A., A. Hatzubai, M. Davis, I. Lavon, S. Amit, A. M. Manning, J. S. Andersen, M. Mann, F. Mercurio, and Y. Ben-Neriah. 1998. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396:590–594.
  • Zandi, E., D. M. Rothwarf, M. Delhase, M. Hayakawa, and M. Karin. 1997. The IκB kinase complex (IKK) contains two kinase subunits, IKK alpha and IKK beta, necessary for IκB phosphorylation and NF-κB activation. Cell 91:243–252.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.