21
Views
76
CrossRef citations to date
0
Altmetric
Cell Growth and Development

ZBP-89 Promotes Growth Arrest through Stabilization of p53

&
Pages 4670-4683 | Received 18 Dec 2000, Accepted 20 Apr 2001, Published online: 28 Mar 2023

REFERENCES

  • An, W. G., M. Kanekal, M. C. Simon, E. Maltepe, M. V. Blagosklonny, and L. M. Neckers. 1998. Stabilization of wild-type p53 by hypoxia-inducible factor 1alpha. Nature 392:405–408.
  • Ashcroft, M., M. H. Kubbutat, and K. H. Vousden. 1999. Regulation of p53 function and stability by phosphorylation. Mol. Cell. Biol. 19:1751–1758.
  • Ashcroft, M., and K. H. Vousden. 1999. Regulation of p53 stability. Oncogene 18:7637–7643.
  • Avantaggiati, M. L., V. Ogryzko, K. Gardner, A. Giordano, A. S. Levine, and K. Kelly. 1997. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 89:1175–1184.
  • Bai, L., and J. L. Merchant. 2000. Transcription factor ZBP-89 cooperates with histone acetyltransferase p300 during butyrate activation of p21waf1 transcription in human cells. J. Biol. Chem. 275:30725–30733.
  • Blagosklonny, M. V.. 1997. Loss of function and p53 protein stabilization. Oncogene 15:1889–1893.
  • Blagosklonny, M. V.. 2000. p53 from complexity to simplicity: mutant p53 stabilization, gain-of-function, and dominant-negative effect. FASEB J. 14:1901–1907.
  • Burns, T. F., and W. S. El-Deiry. 1999. The p53 pathway and apoptosis. J. Cell. Physiol. 181:231–239.
  • Dawson, M. I., J. H. Park, G. Chen, W. Chao, L. Dousman, N. Waleh, P. D. Hobbs, L. Jong, L. Toll, X. Zhang, J. Gu, A. Agadir, J. L. Merchant, L. Bai, A. K. Verma, S. M. Thacher, R. A. Chandraratna, B. Shroot, and D. L. Hill. 2001. Retinoic acid (RA) receptor transcriptional activation correlates with inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase (ODC) activity by retinoids: a potential role for trans-RA-induced ZBP-89 in ODC inhibition. Int. J. Cancer 91:8–21.
  • de Stanchina, E., M. E. McCurrach, F. Zindy, S. Y. Shieh, G. Ferbeyre, A. V. Samuelson, C. Prives, M. F. Roussel, C. J. Sherr, and S. W. Lowe. 1998. E1A signaling to p53 involves the p19(ARF) tumor suppressor. Genes Dev. 12:2434–2442.
  • Earnshaw, W. C., L. M. Martins, and S. H. Kaufmann. 1999. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68:383–424.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • el-Mahdani, N., J. C. Vaillant, M. Guiguet, S. Prevot, V. Bertrand, C. Bernard, R. Parc, G. Bereziat, and B. Hermelin. 1997. Overexpression of p53 mRNA in colorectal cancer and its relationship to p53 gene mutation. Br. J. Cancer 75:528–536.
  • Fan, S., J. A. Wang, R. Q. Yuan, Y. X. Ma, Q. Meng, M. R. Erdos, L. C. Brody, I. D. Goldberg, and E. M. Rosen. 1998. BRCA1 as a potential human prostate tumor suppressor: modulation of proliferation, damage responses and expression of cell regulatory proteins. Oncogene 16:3069–3082.
  • Giaccia, A. J., and M. B. Kastan. 1998. The complexity of p53 modulation: emerging patterns from divergent signals. Genes Dev. 12:2973–2983.
  • Gu, W., and R. G. Roeder. 1997. Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal. Cell 90:595–606.
  • Harper, J. W., G. R. Adami, N. Wei, K. Keyomarsi, and S. J. Elledge. 1993. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.
  • Hasegawa, T., A. Takeuchi, O. Miyaishi, K.-I. Isobe, and B. D. Crombrugghe. 1997. Cloning and characterization of a transcription factor that binds to the proximal promoters of the two mouse type I collagen genes. J. Biol. Chem. 272:4915–4923.
  • Hasegawa, T., H. Xiao, and K.-I. Isobe. 1999. Cloning of a GADD34-like gene that interacts with the zinc-finger transcription factor which binds to the p21WAF promoter. Biochem. Biophys. Res. Commun. 256:249–254.
  • Haupt, Y., R. Maya, A. Kazaz, and M. Oren. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.
  • Hollstein, M., D. Sidransky, B. Vogelstein, and C. C. Harris. 1991. p53 mutations in human cancers. Science 253:49–53.
  • Horikoshi, N., A. Usheva, J. Chen, A. J. Levine, R. Weinmann, and T. Shenk. 1995. Two domains of p53 interact with the TATA-binding protein, and the adenovirus 13S E1A protein disrupts the association, relieving p53-mediated transcriptional repression. Mol. Cell. Biol. 15:227–234.
  • Hsieh, J. K., F. S. Chan, D. J. O'Connor, S. Mittnacht, S. Zhong, and X. Lu. 1999. RB regulates the stability and the apoptotic function of p53 via MDM2. Mol. Cell 3:181–193.
  • Hupp, T. R., A. Sparks, and D. P. Lane. 1995. Small peptides activate the latent sequence-specific DNA binding function of p53. Cell 83:237–245.
  • Ikeda, A., X. Sun, Y. Li, Y. Zhang, R. Eckner, T. S. Doi, T. Takahashi, Y. Obata, K. Yoshioka, and K. Yamamoto. 2000. p300/CBP-dependent and -independent transcriptional interference between NF-kappaB RelA and p53. Biochem. Biophys. Res. Commun. 272:375–379.
  • Kern, S. E., K. W. Kinzler, A. Bruskin, D. Jarosz, P. Friedman, C. Prives, and B. Vogelstein. 1991. Identification of p53 as a sequence-specific DNA-binding protein. Science 252:1708–1711.
  • Ko, L. J., and C. Prives. 1996. p53: puzzle and paradigm. Genes Dev. 10:1054–1072.
  • Kubbutat, M. H., S. N. Jones, and K. H. Vousden. 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303.
  • Kubbutat, M. H., R. L. Ludwig, M. Ashcroft, and K. H. Vousden. 1998. Regulation of Mdm2-directed degradation by the C terminus of p53. Mol. Cell. Biol. 18:5690–5698.
  • Law, G. L., H. Itoh, D. J. Law, G. J. Mize, J. L. Merchant, and D. R. Morris. 1998. Transcription factor ZBP-89 regulates the activity of the ornithine decarboxylase promoter. J. Biol. Chem. 273:19955–19964.
  • Levine, A. J.. 1997. p53, the cellular gatekeeper for growth and division. Cell 88:323–331.
  • Lill, N. L., S. R. Grossman, D. Ginsberg, J. DeCaprio, and D. M. Livingston. 1997. Binding and modulation of p53 by p300/CBP coactivators. Nature 387:823–827.
  • Lowe, S. W., S. Bodis, A. McClatchey, L. Remington, H. E. Ruley, D. E. Fisher, D. E. Housman, and T. Jacks. 1994. p53 status and the efficacy of cancer therapy in vivo. Science 266:807–810.
  • Merchant, J. L., G. R. Iyer, B. R. Taylor, J. R. Kitchen, E. R. Mortensen, Z. Wang, R. J. Flintoft, J. Michel, and R. Bassel-Duby. 1996. ZBP-89, a Krüppel-type zinc finger protein, inhibits EGF induction of the gastrin promoter. Mol. Cell. Biol. 16:6644–6653.
  • Nakamura, S., J. A. Roth, and T. Mukhopadhyay. 2000. Multiple lysine mutations in the C-terminal domain of p53 interfere with MDM2-dependent protein degradation and ubiquitination. Mol. Cell. Biol. 20:9391–9398.
  • Palmero, I., C. Pantoja, and M. Serrano. 1998. p19ARF links the tumour suppressor p53 to Ras. Nature 395:125–126.
  • Pomerantz, J., N. Schreiber-Agus, N. J. Liegeois, A. Silverman, L. Alland, L. Chin, J. Potes, K. Chen, I. Orlow, H. W. Lee, C. Cordon-Cardo, and R. A. DePinho. 1998. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92:713–723.
  • Prives, C., and P. A. Hall. 1999. The p53 pathway. J. Pathol. 187:112–126.
  • Remington, M. C., S. A. Tarle, B. Simon, and J. L. Merchant. 1997. ZBP-89, a Kruppel-type zinc finger protein, inhibits cell proliferation. Biochem. Biophys. Res. Commun. 237:230–234.
  • Rodrigues, N. R., A. Rowan, M. E. Smith, I. B. Kerr, W. F. Bodmer, J. V. Gannon, and D. P. Lane. 1990. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. USA 87:7555–7559.
  • Rodriguez, M. S., J. M. Desterro, S. Lain, D. P. Lane, and R. T. Hay. 2000. Multiple C-terminal lysine residues target p53 for ubiquitin-proteasome-mediated degradation. Mol. Cell. Biol. 20:8458–8467.
  • Roemer, K.. 1999. Mutant p53: gain-of-function oncoproteins and wild-type p53 inactivators. Biol. Chem. 380:879–887.
  • Shieh, S. Y., M. Ikeda, Y. Taya, and C. Prives. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334.
  • Sionov, R. V., E. Moallem, M. Berger, A. Kazaz, O. Gerlitz, Y. Ben-Neriah, M. Oren, and Y. Haupt. 1999. c-Abl neutralizes the inhibitory effect of Mdm2 on p53. J. Biol. Chem. 274:8371–8374.
  • Somasundaram, K., T. K. MacLachlan, T. F. Burns, M. Sgagias, K. H. Cowan, B. L. Weber, and W. S. el-Deiry. 1999. BRCA1 signals ARF-dependent stabilization and coactivation of p53. Oncogene 18:6605–6614.
  • Stott, F. J., S. Bates, M. C. James, B. B. McConnell, M. Starborg, S. Brookes, I. Palmero, K. Ryan, E. Hara, K. H. Vousden, and G. Peters. 1998. The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J. 17:5001–5014.
  • Taniuchi, T., E. R. Mortensen, A. Ferguson, J. Greenson, and J. L. Merchant. 1997. Overexpression of ZBP-89, a zinc finger DNA binding protein, in gastric cancer. Biochem. Biophys. Res. Commun. 233:154–160.
  • Tao, W., and A. J. Levine. 1999. P19(ARF) stabilizes p53 by blocking nucleo-cytoplasmic shuttling of Mdm2. Proc. Natl. Acad. Sci. USA 96:6937–6941.
  • Vogelstein, B., D. Lane, and A. J. Levine. 2000. Surfing the p53 network. Nature 408:307–310.
  • Vousden, K. H.. 2000. p53: death star. Cell 103:691–694.
  • Vousden, K. H., and G. F. Woude. 2000. The ins and outs of p53. Nat. Cell Biol. 2:E178–E180.
  • Wang, Y., and C. Prives. 1995. Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376:88–91.
  • Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nakatani. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319–324.
  • Zambetti, G. P., and A. J. Levine. 1993. A comparison of the biological activities of wild-type and mutant p53. FASEB J. 7:855–865.
  • Zhan, Q., K. A. Lord, I. Alamo Jr., M. C. Hollander, F. Carrier, D. Ron, K. W. Kohn, B. Hoffman, D. A. Liebermann, and A. J. Fornace Jr.. 1994. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol. 14:2361–2371.
  • Zhang, H., K. Somasundaram, Y. Peng, H. Tian, D. Bi, B. L. Weber, and W. S. El-Deiry. 1998. BRCA1 physically associates with p53 and stimulates its transcriptional activity. Oncogene 16:1713–1721.
  • Zindy, F., C. M. Eischen, D. H. Randle, T. Kamijo, J. L. Cleveland, C. J. Sherr, and M. F. Roussel. 1998. Myc signaling via the ARF tumor suppressor regulates p53-dependent apoptosis and immortalization. Genes Dev. 12:2424–2433.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.