11
Views
48
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Reduced Rates of Gene Loss, Gene Silencing, and Gene Mutation in Dnmt1-Deficient Embryonic Stem Cells

, , , , &
Pages 7587-7600 | Received 07 Jun 2001, Accepted 16 Aug 2001, Published online: 28 Mar 2023

REFERENCES

  • Adra, C. N., P. H. Boer, and M. W. McBurney. 1987. Cloning and expression of the mouse pgk-1 gene and the nucleotide sequence of its promoter. Gene 60:65–74.
  • Akiyama, N., D. Alexander, Y. Aoki, and M. Noda. 1996. Characterization of mutations induced by 300 and 320 nm UV radiation in a rat fibroblast cell line. Mutat. Res. 372:119–131.
  • Bachl, J., M. Dessing, C. Olsson, R. C. von Borstel, and C. Steinberg. 1999. An experimental solution for the Luria-Delbruck fluctuation problem in measuring hypermutation rates. Proc. Natl. Acad. Sci. USA 96:6847–6849.
  • Baker, S. M., A. W. Plug, T. A. Prolla, C. E. Bronner, A. C. Harris, X. Yao, D. M. Christie, C. Monell, N. Arnheim, A. Bradley, T. Ashley, and R. M. Liskay. 1996. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet. 13:336–342.
  • Bakin, A. V., and T. Curran. 1999. Role of DNA 5-methylcytosine transferase in cell transformation by fos. Science 283:387–390.
  • Bandaru, B., J. Gopal, and A. S. Bhagwat. 1996. Overproduction of DNA cytosine methyltransferases causes methylation and C→T mutations at non-canonical sites. J. Biol. Chem. 271:7851–7859.
  • Baylin, S. B., and J. G. Herman. 2000. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet. 16:168–174.
  • Bird, A. P., and A. P. Wolffe. 1999. Methylation-induced repression—belts, braces, and chromatin. Cell 99:451–454.
  • Black, M. E., and L. A. Loeb. 1993. Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro. Biochemistry 32:11618–11626.
  • Brisebois, J. J., and M. S. DuBow. 1993. Selection for spontaneous null mutations in a chromosomally-integrated HSV-1 thymidine kinase gene yields deletions and a mutation caused by intragenic illegitimate recombination. Mutat. Res. 287:191–205.
  • Chapman, V., L. Forrester, J. Sanford, N. Hastie, and J. Rossant. 1984. Cell lineage-specific undermethylation of mouse repetitive DNA. Nature 307:284–286.
  • Chen, R. Z., U. Pettersson, C. Beard, L. Jackson-Grusby, and R. Jaenisch. 1998. DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93.
  • Chomczynski, P., and N. Sacchi. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162:156–159.
  • Chuang, L. S., H. I. Ian, T. W. Koh, H. H. Ng, G. Xu, and B. F. Li. 1997. Human DNA-(cytosine-5) methyltransferase-PCNA complex as a target for p21WAF1. Science 277:1996–2000.
  • Church, G. M., and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995.
  • Clark, S. J., J. Harrison, C. L. Paul, and M. Frommer. 1994. High sensitivity mapping of methylated cytosines. Nucleic Acids Res. 22:2990–2997.
  • Cooper, D. N., and M. Krawczak. 1990. The mutational spectrum of single base-pair substitutions causing human genetic disease: patterns and predictions. Hum. Genet. 85:55–74.
  • Cormier, R. T., and W. F. Dove. 2000. Dnmt1N/+ reduces the net growth rate and multiplicity of intestinal adenomas in C57BL/6-multiple intestinal neoplasia (Min)/+ mice independently of p53 but demonstrates strong synergy with the modifier of Min 1(AKR) resistance allele. Cancer Res. 60:3965–3970.
  • de Nooij-van Dalen, A. G., V. H. van Buuren-van Seggelen, P. H. Lohman, and M. Giphart-Gassler. 1998. Chromosome loss with concomitant duplication and recombination both contribute most to loss of heterozygosity in vitro. Genes Chromosomes Cancer 21:30–38.
  • Eads, C. A., K. D. Danenberg, K. Kawakami, L. B. Saltz, P. V. Danenberg, and P. W. Laird. 1999. CpG island hypermethylation in human colorectal tumors is not associated with DNA methyltransferase overexpression. Cancer Res. 59:2302–2306.
  • Eckert, K. A., C. A. Ingle, D. K. Klinedinst, and N. R. Drinkwater. 1988. Molecular analysis of mutations induced in human cells by N-ethyl-N-nitrosourea. Mol. Carcinog. 1:50–56.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Fuks, F., W. A. Burgers, A. Brehm, L. Hughes-Davies, and T. Kouzarides. 2000. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet. 24:88–91.
  • Gonzalez-Zuleta, M., C. M. Bender, A. S. Yang, T. Nguyen, R. W. Beart, J. M. van Tornout, and P. A. Jones. 1995. Methylation of the 5′ CpG island of the p16/CDKN2 tumor suppressor gene in normal and transformed human tissues correlates with gene silencing. Cancer Res. 55:4531–4535.
  • Gonzalgo, M. L., and P. A. Jones. 1997. Mutagenic and epigenetic effects of DNA methylation. Mutat. Res. 386:107–118.
  • Gonzalgo, M. L., and P. A. Jones. 1997. Rapid quantitation of methylation differences at specific sites using methylation-sensitive single nucleotide primer extension (Ms-SNuPE). Nucleic Acids Res. 25:2529–2531.
  • Greenblatt, M. S., W. P. Bennett, M. Hollstein, and C. C. Harris. 1994. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 54:4855–4878.
  • Hansen, R. S., C. Wijmenga, P. Luo, A. M. Stanek, T. K. Canfield, C. M. Weemaes, and S. M. Gartler. 1999. The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc. Natl. Acad. Sci. USA 96:14412–14417.
  • Haug, T., F. Skorpen, K. Kvaloy, I. Eftedal, H. Lund, and H. E. Krokan. 1996. Human uracil-DNA glycosylase gene: sequence organization, methylation pattern, and mapping to chromosome 12q23–q24.1. Genomics 36:408–416.
  • Hendrich, B., U. Hardeland, H. H. Ng, J. Jiricny, and A. Bird. 1999. The thymine glycosylase MBD4 can bind to the product of deamination at methylated CpG sites. Nature 401:301–304.
  • Hollstein, M., K. Rice, M. S. Greenblatt, T. Soussi, R. Fuchs, T. Sorlie, E. Hovig, B. Smith-Sorensen, R. Montesano, and C. C. Harris. 1994. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 22:3551–3555.
  • Hsieh, C.-L.. 1994. Dependence of transcriptional repression on CpG methylation density. Mol. Cell. Biol. 14:5487–5494.
  • Hussain, S. P., and C. C. Harris. 1999. p53 mutation spectrum and load: the generation of hypotheses linking the exposure of endogenous or exogenous carcinogens to human cancer. Mutat. Res. 428:23–32.
  • Ikehata, H., M. Takatsu, Y. Saito, and T. Ono. 2000. Distribution of spontaneous CpG-associated G:C → A:T mutations in the lacZ gene of Muta mice: effects of CpG methylation, the sequence context of CpG sites, and severity of mutations on the activity of the lacZ gene product. Environ. Mol. Mutagen. 36:301–311.
  • Jackson-Grusby, L., P. W. Laird, S. N. Magge, B. J. Moeller, and R. Jaenisch. 1997. Mutagenicity of 5-aza-2′-deoxycytidine is mediated by the mammalian DNA methyltransferase. Proc. Natl. Acad. Sci. USA 94:4681–4685.
  • Ji, W., R. Hernandez, X. Y. Zhang, G. Z. Qu, A. Frady, M. Varela, and M. Ehrlich. 1997. DNA demethylation and pericentromeric rearrangements of chromosome 1. Mutat. Res. 379:33–41.
  • Johnson, K. A., C. P. Lerner, L. C. Di Lacio, P. W. Laird, A. H. Sharpe, and E. M. Simpson. 1995. Transgenic mice for the preparation of hygromycin-resistant primary embryonic fibroblast feeder layers for embryonic stem cell selections. Nucleic Acids Res. 23:1273–1275.
  • Jones, P. A., and P. W. Laird. 1999. Cancer epigenetics comes of age. Nat. Genet. 21:163–167.
  • Kass, S. U., D. Pruss, and A. P. Wolffe. 1997. How does DNA methylation repress transcription?. Trends Genet. 13:444–449.
  • Kendal, W. S., and P. Frost. 1988. Pitfalls and practice of Luria-Delbruck fluctuation analysis: a review. Cancer Res. 48:1060–1065.
  • Knox, J. D., F. D. Araujo, P. Bigey, A. D. Slack, G. B. Price, M. Zannis-Hadjopoulos, and M. Szyf. 2000. Inhibition of DNA methyltransferase inhibits DNA replication. J. Biol. Chem. 275:17986–17990.
  • Kussmann-Gerber, S., O. Kuonen, G. Folkers, B. D. Pilger, and L. Scapozza. 1998. Drug resistance of herpes simplex virus type 1—structural considerations at the molecular level of the thymidine kinase. Eur. J. Biochem. 255:472–481.
  • Laird, P. W., L. Jackson-Grusby, A. Fazeli, S. L. Dickinson, W. E. Jung, E. Li, R. A. Weinberg, and R. Jaenisch. 1995. Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81:197–205.
  • Laird, P. W., and R. Jaenisch. 1994. DNA methylation and cancer. Hum. Mol. Genet. 3:1487–1495.
  • Laird, P. W., and R. Jaenisch. 1996. The role of DNA methylation in cancer genetics and epigenetics. Annu. Rev. Genet. 30:441–464.
  • Laird, P. W., A. Zijderveld, K. Linders, M. A. Rudnicki, R. Jaenisch, and A. Berns. 1991. Simplified mammalian DNA isolation procedure. Nucleic Acids Res. 19:4293
  • Lei, H., S. P. Oh, M. Okano, R. Juttermann, K. A. Goss, R. Jaenisch, and E. Li. 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195–3205.
  • Levy, D. B., K. J. Smith, Y. Beazer-Barclay, S. R. Hamilton, B. Vogelstein, and K. W. Kinzler. 1994. Inactivation of both APC alleles in human and mouse tumors. Cancer Res. 54:5953–5958.
  • Li, E., T. H. Bestor, and R. Jaenisch. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926.
  • Lichtenauer-Kaligis, E. G., J. Thijssen, H. den Dulk, P. van de Putte, J. G. Tasseron-de Jong, and M. Giphart-Gassler. 1996. Comparison of spontaneous hprt mutation spectra at the nucleotide sequence level in the endogenous hprt gene and five other genomic positions. Mutat. Res. 351:147–155.
  • Lichtenauer-Kaligis, E. G., J. C. Thijssen, H. den Dulk, P. van de Putte, M. Giphart-Gassler, and J. G. Tasseron-de Jong. 1995. Spontaneous mutation spectrum in the hprt gene in human lymphoblastoid TK6 cells. Mutagenesis 10:137–143.
  • Luongo, C., A. R. Moser, S. Gledhill, and W. F. Dove. 1994. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 54:5947–5952.
  • Luria, S. E., and M. Delbrück. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28:491–511.
  • MacLeod, A. R., and M. Szyf. 1995. Expression of antisense to DNA methyltransferase mRNA induces DNA demethylation and inhibits tumorigenesis. J. Biol. Chem. 270:8037–8043.
  • McBurney, M. W.. 1999. Gene silencing in the development of cancer. Exp. Cell Res. 248:25–29.
  • Monnat, R. J. Jr.. 1989. Molecular analysis of spontaneous hypoxanthine phosphoribosyltransferase mutations in thioguanine-resistant HL-60 human leukemia cells. Cancer Res. 49:81–87.
  • Munir, K. M., D. C. French, D. K. Dube, and L. A. Loeb. 1992. Permissible amino acid substitutions within the putative nucleoside binding site of herpes simplex virus type 1 encoded thymidine kinase established by random sequence mutagenesis. J. Biol. Chem. 267:6584–6589.
  • Neddermann, P., P. Gallinari, T. Lettieri, D. Schmid, O. Truong, J. J. Hsuan, K. Wiebauer, and J. Jiricny. 1996. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 271:12767–12774.
  • Okano, M., D. W. Bell, D. A. Haber, and E. Li. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257.
  • Okano, M., S. Xie, and E. Li. 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet. 19:219–220.
  • Okano, M., S. Xie, and E. Li. 1998. Dnmt2 is not required for de novo and maintenance methylation of viral DNA in embryonic stem cells. Nucleic Acids Res. 26:2536–2540.
  • O'Neill, J. P., and B. A. Finette. 1998. Transition mutations at CpG dinucleotides are the most frequent in vivo spontaneous single-based substitution mutation in the human HPRT gene. Environ. Mol. Mutagen. 32:188–191.
  • Ono, T., H. Ikehata, S. Nakamura, Y. Saito, Y. Hosoi, Y. Takai, S. Yamada, J. Onodera, and K. Yamamoto. 2000. Age-associated increase of spontaneous mutant frequency and molecular nature of mutation in newborn and old lacZ-transgenic mouse. Mutat. Res. 447:165–177.
  • Perutz, M. F.. 1990. Frequency of abnormal human haemoglobins caused by C—T transitions in CpG dinucleotides. J. Mol. Biol. 213:203–206.
  • Pfeifer, G. P.. 2000. p53 mutational spectra and the role of methylated CpG sequences. Mutat. Res. 450:155–166.
  • Ramchandani, S., A. R. MacLeod, M. Pinard, E. von Hofe, and M. Szyf. 1997. Inhibition of tumorigenesis by a cytosine-DNA, methyltransferase, antisense oligodeoxynucleotide. Proc. Natl. Acad. Sci. USA 94:684–689.
  • Robertson, K. D., S. Ait-Si-Ali, T. Yokochi, P. A. Wade, P. L. Jones, and A. P. Wolffe. 2000. DNMT1 forms a complex with Rb, E2F1 and HDAC1 and represses transcription from E2F-responsive promoters. Nat. Genet. 25:338–342.
  • Robertson, K. D., and A. P. Wolffe. 2000. DNA methylation in health and disease. Nat. Rev. Genet. 1:11–19.
  • Rountree, M. R., K. E. Bachman, and S. B. Baylin. 2000. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25:269–277.
  • Schmutte, C., R. Baffa, L. M. Veronese, Y. Murakumo, and R. Fishel. 1997. Human thymine-DNA glycosylase maps at chromosome 12q22–q24.1: a region of high loss of heterozygosity in gastric cancer. Cancer Res. 57:3010–3015.
  • Schwartz, F., N. Maeda, O. Smithies, R. Hickey, W. Edelmann, A. Skoultchi, and R. Kucherlapati. 1991. A dominant positive and negative selectable gene for use in mammalian cells. Proc. Natl. Acad. Sci. USA 88:10416–10420.
  • Sharath, A. N., E. Weinhold, and A. S. Bhagwat. 2000. Reviving a dead enzyme: cytosine deaminations promoted by an inactive DNA methyltransferase and an S-adenosylmethionine analogue. Biochemistry 39:14611–14616.
  • Shen, J. C., W. M. Rideout III, and P. A. Jones. 1992. High frequency mutagenesis by a DNA methyltransferase. Cell 71:1073–1080.
  • Shen, J. C., W. M. Rideout III, and P. A. Jones. 1994. The rate of hydrolytic deamination of 5-methylcytosine in double-stranded DNA. Nucleic Acids Res. 22:972–976.
  • Slack, A., N. Cervoni, M. Pinard, and M. Szyf. 1999. DNA methyltransferase is a downstream effector of cellular transformation triggered by simian virus 40 large T antigen. J. Biol. Chem. 274:10105–10112.
  • Sved, J., and A. Bird. 1990. The expected equilibrium of the CpG dinucleotide in vertebrate genomes under a mutation model. Proc. Natl. Acad. Sci. USA 87:4692–4696.
  • Thiagalingam, S., S. Laken, J. K. Willson, S. D. Markowitz, K. W. Kinzler, B. Vogelstein, and C. Lengauer. 2001. Mechanisms underlying losses of heterozygosity in human colorectal cancers. Proc. Natl. Acad. Sci. USA 98:2698–2702.
  • Tucker, K. L., C. Beard, J. Dausmann, L. Jackson-Grusby, P. W. Laird, H. Lei, E. Li, and R. Jaenisch. 1996. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 10:1008–1020.
  • Tycko, B.. 2000. Epigenetic gene silencing in cancer. J. Clin. Investig. 105:401–407.
  • Wang, R. Y., K. C. Kuo, C. W. Gehrke, L. H. Huang, and M. Ehrlich. 1982. Heat- and alkali-induced deamination of 5-methylcytosine and cytosine residues in DNA. Biochim. Biophys. Acta 697:371–377.
  • Wijnhoven, S. W., H. J. Kool, C. M. van Teijlingen, A. A. van Zeeland, and H. Vrieling. 2001. Loss of heterozygosity in somatic cells of the mouse. An important step in cancer initiation?. Mutat. Res. 473:23–36.
  • Wu, J., J. P. Issa, J. Herman, D. E. Bassett Jr., B. D. Nelkin, and S. B. Baylin. 1993. Expression of an exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH 3T3 cells. Proc. Natl. Acad. Sci. USA 90:8891–8895.
  • Xu, G. L., T. H. Bestor, D. Bourc'his, C. L. Hsieh, N. Tommerup, M. Bugge, M. Hulten, X. Qu, J. J. Russo, and E. Viegas-Pequignot. 1999. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNA methyltransferase gene. Nature 402:187–191.
  • Yang, A. S., M. L. Gonzalgo, J. M. Zingg, R. P. Millar, J. D. Buckley, and P. A. Jones. 1996. The rate of CpG mutation in Alu repetitive elements within the p53 tumor suppressor gene in the primate germline. J. Mol. Biol. 258:240–250.
  • Yang, A. S., P. A. Jones, and A. Shibata. 1996. The mutational burden of 5-methylcytosine. Epigenetic mechanisms of gene regulation.. A. D. Riggs, R. A. Martienssen, and V. E. A. Russo. 77–94. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Yang, A. S., J. C. Shen, J. M. Zingg, S. Mi, and P. A. Jones. 1995. HhaI and HpaII DNA methyltransferases bind DNA mismatches, methylate uracil and block DNA repair. Nucleic Acids Res. 23:1380–1387.
  • Yebra, M. J., and A. S. Bhagwat. 1995. A cytosine methyltransferase converts 5-methylcytosine in DNA to thymine. Biochemistry 34:14752–14757.
  • Yenofsky, R. L., M. Fine, and J. W. Pellow. 1990. A mutant neomycin phosphotransferase II gene reduces the resistance of transformants to antibiotic selection pressure. Proc. Natl. Acad. Sci. USA 87:3435–3439.
  • Zingg, J. M., J. C. Shen, A. S. Yang, H. Rapoport, and P. A. Jones. 1996. Methylation inhibitors can increase the rate of cytosine deamination by (cytosine-5)-DNA methyltransferase. Nucleic Acids Res. 24:3267–3275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.