7
Views
48
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Molecular Dissection of DNA Sequences and Factors Involved in Slow Muscle-Specific Transcription

, , , , &
Pages 8490-8503 | Received 01 May 2001, Accepted 18 Sep 2001, Published online: 27 Mar 2023

REFERENCES

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Amacher, S. L., J. N. Buskin, and S. D. Hauschka. 1993. Multiple regulatory elements contribute differentially to muscle creatine kinase enhancer activity in skeletal and cardiac muscle. Mol. Cell. Biol. 13:2753–2764.
  • Banerjee-Basu, S., and A. Buonanno. 1993. cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice. Mol. Cell. Biol. 13:7019–7028.
  • Bayarsaihan, D., and F. H. Ruddle. 2000. Isolation and characterization of BEN, a member of the TFII-I family of DNA-binding proteins containing distinct helix-loop-helix domains. Proc. Natl. Acad. Sci. USA 97:7342–7347.
  • Bellugi, U., L. Lichtenberger, W. Jones, Z. Lai, and M. St. George. 2000. I. The neurocognitive profile of Williams syndrome: a complex pattern of strengths and weaknesses. J. Cogn. Neurosci. 12:7–29.
  • Biesiada, E., Y. Hamamori, L. Kedes, and V. Sartorelli. 1999. Myogenic basic helix-loop-helix proteins and Sp1 interact as components of a multiprotein transcriptional complex required for activity of the human cardiac alpha-actin promoter. Mol. Cell. Biol. 19:2577–2584.
  • Buckingham, M.. 1992. Making muscle in mammals. Trends Genet. 8:144–148.
  • Buonanno, A., J. Cheng, P. Venepally, J. Weis, and S. Calvo. Activity-dependent regulation of muscle genes: repressive and stimulatory effects of innervation. Acta Physiol. Scand. 163:S17–S26.
  • Buonanno, A., D. G. Edmondson, and W. P. Hayes. 1993. Upstream sequences of the myogenin gene convey responsiveness to skeletal muscle denervation in transgenic mice. Nucleic Acids Res. 21:5684–5693.
  • Buonanno, A., and N. Rosenthal. 1996. Molecular control of muscle diversity and plasticity. Dev. Genet. 19:95–107.
  • Calvo, S., J. Stauffer, M. Nakayama, and A. Buonanno. 1996. Transcriptional control of muscle plasticity: differential regulation of troponin I genes by electrical activity. Dev. Genet. 19:169–181.
  • Calvo, S., P. Venepally, J. Cheng, and A. Buonanno. 1999. Fiber-type-specific transcription of the troponin I slow gene is regulated by multiple elements. Mol. Cell. Biol. 19:515–525.
  • Cheng, T. C., M. C. Wallace, J. P. Merlie, and E. N. Olson. 1993. Separable regulatory elements governing myogenin transcription in mouse embryogenesis. Science 261:215–218.
  • Chin, E. R., E. N. Olson, J. A. Richardson, Q. Yang, C. Humphries, J. M. Shelton, H. Wu, W. Zhu, R. Bassel-Duby, and R. S. Williams. 1998. A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12:2499–2509.
  • Condon, K., L. Silberstein, H. M. Blau, and W. J. Thompson. 1990. Differentiation of fiber types in aneural musculature of the prenatal rat hindlimb. Dev. Biol. 138:275–295.
  • DiMario, J. X., S. E. Fernyak, and F. E. Stockdale. 1993. Myoblasts transferred to the limbs of embryos are committed to specific fibre fates. Nature 362:165–167.
  • DiMario, J. X., and F. E. Stockdale. 1997. Both myoblast lineage and innervation determine fiber type and are required for expression of the slow myosin heavy chain 2 gene. Dev. Biol. 188:167–180.
  • Donoghue, M. J., B. L. Patton, J. R. Sanes, and J. P. Merlie. 1992. An axial gradient of transgene methylation in murine skeletal muscle: genomic imprint of rostrocaudal position. Development 116:1101–1112.
  • Esser, K., P. Gunning, and E. Hardeman. 1993. Nerve-dependent and -independent patterns of mRNA expression in regenerating skeletal muscle. Dev. Biol. 159:173–183.
  • Esser, K., T. Nelson, V. Lupa-Kimball, and E. Blough. 1999. The CACC box and myocyte enhancer factor-2 sites within the myosin light chain 2 slow promoter cooperate in regulating nerve-specific transcription in skeletal muscle. J. Biol. Chem. 274:12095–12102.
  • Francke, U.. 1999. Williams-Beuren syndrome: genes and mechanisms. Hum. Mol. Genet. 8:1947–1954.
  • Franke, Y., R. J. Peoples, and U. Francke. 1999. Identification of GTF2IRD1, a putative transcription factor within the Williams-Beuren syndrome deletion at 7q11.23. Cytogenet. Cell Genet. 86:296–304.
  • Grieshammer, U., M. J. McGrew, and N. Rosenthal. 1995. Role of methylation in maintenance of positionally restricted transgene expression in developing muscle. Development 121:2245–2253.
  • Grueneberg, D. A., R. W. Henry, A. Brauer, C. D. Novina, V. Cheriyath, A. L. Roy, and M. Gilman. 1997. A multifunctional DNA-binding protein that promotes the formation of serum response factor/homeodomain complexes: identity to TFII-I. Genes Dev. 11:2482–2493.
  • Hallauer, P. L., H. L. Bradshaw, and K. E. Hastings. 1993. Complex fiber-type-specific expression of fast skeletal muscle troponin I gene constructs in transgenic mice. Development 119:691–701.
  • Hidaka, K., I. Yamamoto, Y. Arai, and T. Mukai. 1993. The MEF-3 motif is required for MEF-2-mediated skeletal muscle-specific induction of the rat aldolase A gene. Mol. Cell. Biol. 13:6469–6478.
  • Higuchi, R.. 1990. Recombinant PCR. PCR protocols. A guide to methods and applications.. M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White. 177–183. Academic Press, San Diego, Calif
  • Hogan, B.. 1994. Manipulating the mouse embryo: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, N.Y
  • Hughes, D. S., and M. Ontell. 1992. Morphometric analysis of the developing, murine aneural soleus muscle. Dev. Dyn. 193:175–184.
  • Hughes, D. S., R. R. Schade, and M. Ontell. 1992. Ablation of the fetal mouse spinal cord: the effect on soleus muscle cytoarchitecture. Dev. Dyn. 193:164–174.
  • Hughes, S. M., and P. C. Salinas. 1999. Control of muscle fibre and motoneuron diversification. Curr. Opin. Neurobiol. 9:54–64.
  • Javahery, R., A. Khachi, K. Lo, B. Zenzie-Gregory, and S. T. Smale. 1994. DNA sequence requirements for transcriptional initiator activity in mammalian cells. Mol. Cell. Biol. 14:116–127.
  • Kim, D. W., V. Cheriyath, A. L. Roy, and B. H. Cochran. 1998. TFII-I enhances activation of the c-fos promoter through interactions with upstream elements. Mol. Cell. Biol. 18:3310–3320.
  • Koppe, R. I., P. L. Hallauer, G. Karpati, and K. E. Hastings. 1989. cDNA clone and expression analysis of rodent fast and slow skeletal muscle troponin I mRNAs. J. Biol. Chem. 264:14327–14333.
  • Kozak, M.. 1987. An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15:8125–8148.
  • Lennon, G., C. Auffray, M. Polymeropoulos, and M. B. Soares. 1996. The I.M.A.G.E. consortium: an integrated molecular analysis of genomes and their expression. Genomics 33:151–152.
  • Lupa-Kimball, V. A., and K. A. Esser. 1998. Use of DNA injection for identification of slow nerve-dependent regions of the MLC2s gene. Am. J. Physiol. 274:C229–C235.
  • Mathiesen, I.. 1999. Electropermeabilization of skeletal muscle enhances gene transfer in vivo. Gene Ther. 6:508–514.
  • McCarthy, J. J., D. R. Vyas, G. L. Tsika, and R. W. Tsika. 1999. Segregated regulatory elements direct beta-myosin heavy chain expression in response to altered muscle activity. J. Biol. Chem. 274:14270–14279.
  • Molkentin, J. D., and E. N. Olson. 1996. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. USA 93:9366–9373.
  • Montano, M. A., K. Kripke, C. D. Norina, P. Achacoso, L. A. Herzenberg, A. L. Roy, and G. P. Nolan. 1996. NF-kappa B homodimer binding within the HIV-1 initiator region and interactions with TFII-I. Proc. Natl. Acad. Sci. USA 93:12376–12381.
  • Naidu, P. S., D. C. Ludolph, R. Q. To, T. J. Hinterberger, and S. F. Konieczny. 1995. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol. Cell. Biol. 15:2707–2718.
  • Nakayama, M., J. Stauffer, J. Cheng, S. Banerjee-Basu, E. Wawrousek, and A. Buonanno. 1996. Common core sequences are found in skeletal muscle slow- and fast-fiber-type-specific regulatory elements. Mol. Cell. Biol. 16:2408–2417.
  • O'Mahoney, J. V., K. L. Guven, J. Lin, J. E. Joya, C. S. Robinson, R. P. Wade, and E. C. Hardeman. 1998. Identification of a novel slow-muscle-fiber enhancer binding protein, MusTRD1. Mol. Cell. Biol. 18:6641–6652 (Erratum, 20:5361, 2000.)
  • Osborne, L. R., T. Campbell, A. Daradich, S. W. Scherer, and L. C. Tsui. 1999. Identification of a putative transcription factor gene (WBSCR11) that is commonly deleted in Williams-Beuren syndrome. Genomics 57:279–284.
  • Parmacek, M. S., H. S. Ip, F. Jung, T. Shen, J. F. Martin, A. J. Vora, E. N. Olson, and J. M. Leiden. 1994. A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle. Mol. Cell. Biol. 14:1870–1885.
  • Pette, D., and R. Staron. 1997. Mammalian skeletal muscle fiber type transitions. Int. Rev. Cytol. 170:143–223.
  • Rafuse, V. F., L. D. Milner, and L. T. Landmesser. 1996. Selective innervation of fast and slow muscle regions during early chick neuromuscular development. J. Neurosci. 16:6864–6877.
  • Roy, A. L., H. Du, P. D. Gregor, C. D. Novina, E. Martinez, and R. G. Roeder. 1997. Cloning of an inr- and E-box-binding protein, TFII-I, that interacts physically and functionally with USF1. EMBO J. 16:7091–7104.
  • Roy, A. L., S. Malik, M. Meisterernst, and R. G. Roeder. 1993. An alternative pathway for transcription initiation involving TFII-I. Nature 365:355–359.
  • Salminen, M., S. Lopez, P. Maire, A. Kahn, and D. Daegelen. 1996. Fast-muscle-specific DNA-protein interactions occurring in vivo at the human aldolase A M promoter are necessary for correct promoter activity in transgenic mice. Mol. Cell. Biol. 16:76–85.
  • Sartorelli, V., K. A. Webster, and L. Kedes. 1990. Muscle-specific expression of the cardiac alpha-actin gene requires MyoD1, CArG-box binding factor, and Sp1. Genes Dev. 4:1811–1822.
  • Schiaffino, S., S. Gorza, and S. Ausoni. 1993. Troponin isoform switching in the developing heart and its functional consequences. Trends Cardiovasc. Med. 3:12–17.
  • Seale, P., L. A. Sabourin, A. Girgis-Gabardo, A. Mansouri, P. Gruss, and M. A. Rudnicki. 2000. Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786.
  • Smale, S. T., and D. Baltimore. 1989. The “initiator” as a transcription control element. Cell 57:103–113.
  • Spitz, F., J. Demignon, A. Porteu, A. Kahn, J. P. Concordet, D. Daegelen, and P. Maire. 1998. Expression of myogenin during embryogenesis is controlled by Six/sine oculis homeoproteins through a conserved MEF3 binding site. Proc. Natl. Acad. Sci. USA 95:14220–14225.
  • Spitz, F., M. Salminen, J. Demignon, A. Kahn, D. Daegelen, and P. Maire. 1997. A combination of MEF3 and NFI proteins activates transcription in a subset of fast-twitch muscles. Mol. Cell. Biol. 17:656–666.
  • Stockdale, F. E.. 1997. Mechanisms of formation of muscle fiber types. Cell Struct. Funct. 22:37–43.
  • Stockdale, F. E.. 1992. Myogenic cell lineages. Dev. Biol. 154:284–298.
  • Swoap, S. J., R. B. Hunter, E. J. Stevenson, H. M. Felton, N. V. Kansagra, J. M. Lang, K. A. Esser, and S. C. Kandarian. 2000. The calcineurin-NFAT pathway and muscle fiber-type gene expression. Am. J. Physiol. 279:C915–C924.
  • Tassabehji, M., M. Carette, C. Wilmot, D. Donnai, A. P. Read, and K. Metcalfe. 1999. A transcription factor involved in skeletal muscle gene expression is deleted in patients with Williams syndrome. Eur. J. Hum. Genet. 7:737–747.
  • Tassabehji, M., K. Metcalfe, A. Karmiloff-Smith, M. J. Carette, J. Grant, N. Dennis, W. Reardon, M. Splitt, A. P. Read, and D. Donnai. 1999. Williams syndrome: use of chromosomal microdeletions as a tool to dissect cognitive and physical phenotypes. Am. J. Hum. Genet. 64:118–125.
  • Washabaugh, C. H., M. P. Ontell, Z. Shan, E. P. Hoffman, and M. Ontell. 1998. Role of the nerve in determining fetal skeletal muscle phenotype. Dev. Dyn. 211:177–190.
  • Wentworth, B. M., M. Donoghue, J. C. Engert, E. B. Berglund, and N. Rosenthal. 1991. Paired MyoD-binding sites regulate myosin light chain gene expression. Proc. Natl. Acad. Sci. USA 88:1242–1246.
  • Wicks, I. P., M. L. Howell, T. Hancock, H. Kohsaka, T. Olee, and D. A. Carson. 1995. Bacterial lipopolysaccharide copurifies with plasmid DNA: implications for animal models and human gene therapy. Hum. Gene Ther. 6:317–323.
  • Wilkinson, D. G., and J. Green. 1990. In situ hybridization and the three-dimensional reconstruction of serial sections. Postimplantation mammalian embryos.. A. J. Copp, and D. L. Cokroft. 155–171. Oxford University Press, London, United Kingdom
  • Wilkinson, D. G., and M. A. Nieto. 1993. Detection of messenger RNA by in-situ hybridization to tissue sections and whole mounts. Methods Enzymol. 225:361–373.
  • Wu, H., F. J. Naya, T. A. McKinsey, B. Mercer, J. M. Shelton, E. R. Chin, A. R. Simard, R. N. Michel, R. Bassel-Duby, E. N. Olson, and R. S. Williams. 2000. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19:1963–1973.
  • Yan, X., X. Zhao, M. Qian, N. Guo, X. Gong, and X. Zhu. 2000. Characterization and gene structure of a novel retinoblastoma-protein-associated protein similar to the transcription regulator TFII-I. Biochem. J. 345:749–757.
  • Yee, S. P., and P. W. Rigby. 1993. The regulation of myogenin gene expression during the embryonic development of the mouse. Genes Dev. 7:1277–1289.
  • Yutzey, K. E., R. L. Kline, and S. F. Konieczny. 1989. An internal regulatory element controls troponin I gene expression. Mol. Cell. Biol. 9:1397–1405.
  • Zhu, L., G. E. Lyons, O. Juhasz, J. E. Joya, E. C. Hardeman, and R. Wade. 1995. Developmental regulation of troponin I isoform genes in striated muscles of transgenic mice. Dev. Biol. 169:487–503.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.