26
Views
29
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Recruitment of an RNA Polymerase II Complex Is Mediated by the Constitutive Activation Domain in CREB, Independently of CREB Phosphorylation

, , &
Pages 1001-1010 | Received 08 Sep 2000, Accepted 14 Nov 2000, Published online: 28 Mar 2023

REFERENCES

  • Albright, S. R., and R. Tjian. 2000. TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242:1–13.
  • Arias, J., A. S. Alberts, P. Brindle, F. X. Claret, T. Smeal, M. Karin, J. Feramisco, and M. Montminy. 1994. Activation of cAMP and mitogen responsive genes relies on a common nuclear factor. Nature 370:226–229.
  • Brindle, P., S. Linke, and M. Montminy. 1993. Protein-kinase-A-dependent activator in transcription factor CREB reveals new role for CREM repressors. Nature 364:821–824.
  • Buratowski, S., S. Hahn, L. Guarente, and P. A. Sharp. 1989. Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56:549–561.
  • Burley, S. K., and R. G. Roeder. 1996. Biochemistry and structural biology of transcription factor IID (TFIID). Annu. Rev. Biochem. 65:769–799.
  • Chrivia, J., R. Kwok, N. Lamb, M. Hagiwara, M. Montminy, and R. Goodman. 1993. Phosphorylated CREB binds specifically to the nuclear protein CBP. Nature 365:855–859.
  • Colgan, J., H. Ashali, and J. L. Manley. 1995. A direct interaction between a glutamine-rich activator and the N terminus of TFIIB can mediate transcriptional activation in vivo. Mol. Cell. Biol. 15:2311–2320.
  • Delegeane, A. M., L. H. Ferland, and P. L. Mellon. 1987. Tissue-specific enhancer of the human glycoprotein hormone α-subunit gene: dependence on cyclic AMP-inducible elements. Mol. Cell. Biol. 7:3994–4002.
  • Dignam, J. D., P. L. Martin, B. S. Shastry, and R. G. Roeder. 1983. Eukaryotic gene transcription with purified components. Methods Enzymol. 104:582–598.
  • Dorris, D. R., and K. Struhl. 2000. Artificial recruitment of TFIID, but not RNA polymerase II holoenzyme, activates transcription in mammalian cells. Mol. Cell. Biol. 20:4350–4358.
  • Du, K., and M. Montminy. 1998. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 273:32377–32379.
  • Felinski, E. A., and P. G. Quinn. 1999. The CREB constitutive activation domain interacts with TATA-binding protein-associated factor 110 (TAF110) through specific hydrophobic residues in one of the three subdomains required for both activation and TAF110 binding. J. Biol. Chem. 274:11672–11678.
  • Ferreri, K., G. Gill, and M. Montminy. 1994. The cAMP-regulated transcription factor CREB interacts with a component of the TFIID complex. Proc. Natl. Acad. Sci. USA 91:1210–1213.
  • Gill, G., E. Pascal, Z. H. Tseng, and R. Tjian. 1994. A glutamine-rich hydrophobic patch in transcription factor SP1 contacts the dTAFII 110 component of the drosophila TFIID complex and mediates transcriptional activation. Proc. Natl. Acad. Sci. USA 91:192–196.
  • Ginty, D. D., A. Bonni, and E. Greenberg. 1994. Nerve growth factor activates a ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77:713–725.
  • Gonzalez, G. A., and M. R. Montminy. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675–680.
  • Gonzalez, G. A., K. K. Yamamoto, W. H. Fischer, D. Karr, P. Menzel, W. I. Biggs, W. W. Vale, and M. R. Montminy. 1989. A cluster of phosphorylation sites on the cyclic AMP-regulated nuclear factor CREB predicted by its sequence. Nature 337:749–752.
  • Greenblatt, J.. 1997. RNA polymerase II holoenzyme and transcriptional regulation. Curr. Opin. Cell Biol. 9:310–319.
  • Guermah, M., S. Malik, and R. G. Roeder. 1998. Involvement of TFIID and USA components in transcriptional activation of the human immunodeficiency virus promoter by NF-kappaB and Spl. Mol. Cell. Biol. 18:3234–3244.
  • Hai, T. W., M. Horikoshi, R. G. Roeder, and M. R. Green. 1988. Analysis of the role of the transcription factor ATF in the assembly of a functional preinitiation complex. Cell 54:1043–1051.
  • Hampsey, M.. 1998. Molecular genetics of the RNA polymerase II general transcriptional machinery. Microbiol. Mol. Biol. Rev. 62:465–503.
  • Hampsey, M., and D. Reinberg. 1999. RNA polymerase II as a control panel for multiple coactivator complexes. Curr. Opin. Genet. Dev. 9:132–139.
  • Hoey, T., R. O. J. Weinzierl, G. Gill, J. L. Chen, B. D. Dynlacht, and R. Tjian. 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72:247–260.
  • Horikoshi, M., T. Hai, Y. S. Lin, M. R. Green, and R. G. Roeder. 1988. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54:1033–1042.
  • Ing, N. H., S. Y. Beekman, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 1992. Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II). J. Biol. Chem. 267:17617–17623.
  • Iordanov, M., K. Bender, T. Ade, W. Schmid, C. Sachsenmaier, K. Engel, M. Gaestel, H. J. Rahmsdorf, and P. Herrlich. 1997. CREB is activated by UVC through a p38/HOG-1-dependent protein kinase. EMBO J. 16:1009–1022.
  • Ito, M., C. X. Yuan, S. Malik, W. Gu, J. D. Fondell, S. Yamamura, Z. Y. Fu, X. Zhang, J. Qin, and R. G. Roeder. 1999. Identity between TRAP and SMCC complexes indicates novel pathways for the function of nuclear receptors and diverse mammalian activators. Mol. Cell 3:361–370.
  • Jacq, X., C. Brou, Y. Lutz, I. Davidson, P. Chambon, and L. Tora. 1994. Human TAFII30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor. Cell 79:107–117.
  • Kim, J., J.-F. Lu, and P. Quinn. 2000. Distinct cAMP response element binding protein (CREB) domains stimulate different steps in a concerted mechanism of transcription activation. Proc. Natl. Acad. Sci. USA 97:11292–11296.
  • Kim, K. S., M. K. Lee, J. Carroll, and T. H. Joh. 1993. Both the basal and inducible transcription of the tyrosine hydroxylase gene are dependent upon a cAMP response element. J. Biol. Chem. 268:15689–15695.
  • Kobayashi, N., P. J. Horn, S. M. Sullivan, S. J. Triezenberg, T. G. Boyer, and A. J. Berk. 1998. DA-complex assembly activity required for VP16C transcription activity. Mol. Cell. Biol. 18:4023–4031.
  • Koleske, A. J., and R. A. Young. 1995. The RNA polymerase II holoenzyme and its implications for gene regulation. Trends Biochem. Sci. 20:113–116.
  • Koleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature 368:466–469.
  • Kwok, R. P. S., J. R. Lundblad, J. C. Chrivia, J. P. Richards, H. P. Bachinger, R. G. Brennan, S. G. E. Roberts, M. R. Green, and R. H. Goodman. 1994. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226.
  • Lieberman, P., and A. Berk. 1991. The Zta trans-activator protein stabilizes TFIID association with promoter DNA by direct protein-protein interaction. Genes Dev. 5:2441–2454.
  • Lin, Y. S., and M. R. Green. 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–981.
  • May, M., G. Mengus, L. Carre, P. Chambon, and I. Davidson. 1997. Human TAFII28 promotes transcriptional stimulation by the activation function 2 of the retinoid X receptors. EMBO J. 15:3093–3104.
  • Mengus, G., M. May, L. Carre, P. Chambon, and I. Davidson. 1997. Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev. 11:1381–1395.
  • Meyer, V. E., and R. A. Young. 1998. RNA polymerase II holoenzymes and subcomplexes. J. Biol. Chem. 273:27757–27760.
  • Montminy, M. R., and L. M. Bilezikjian. 1987. Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328:175–178.
  • Nakajima, T., C. Uchida, S. F. Anderson, C. G. Lee, J. Hurwitz, J. D. Parvin, and M. Montminy. 1997. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 90:1107–1112.
  • Nakajima, T., C. Uchida, S. F. Anderson, J. D. Parvin, and M. Montminy. 1997. Analysis of a cAMP-responsive activator reveals a two-component mechanism for transcriptional induction via signal-dependent factors. Genes Dev. 11:738–747.
  • Nilson, J. H., J. A. Bokar, B. Andersen, R. Bohinski, G. Kennedy, R. A. Keri, T. A. Farmerie, and R. A. Fenstermaker. 1989. CRE-binding proteins interact cooperatively to enhance placental-specific expression of the glycoprotein hormone alpha-subunit gene. Ann. N. Y. Acad. Sci. 564:77–85.
  • Orphanides, G., T. Lagrange, and D. Reinberg. 1996. The general transcription factors of RNA polymerase II. Genes Dev. 10:2657–2683.
  • Parker, D., K. Ferreri, T. Nakajima, V. J. LaMorte, R. Evans, S. C. Koerber, C. Hoeger, and M. R. Montminy. 1996. Phosphorylation of CREB at Ser-133 induces complex formation with CREB-binding protein via a direct mechanism. Mol. Cell. Biol. 16:694–703.
  • Parvin, J., and P. Sharp. 1993. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–540.
  • Petty, K. J., Y. I. Krimkevich, and D. Thomas. 1996. A TATA binding protein-associated factor functions as a coactivator for thyroid hormone receptors. Mol. Endocrinol. 10:1632–1645.
  • Pugh, B. F., and R. Tjian. 1992. Diverse transcriptional functions of the multisubunit eukaryotic TFIID complex. J. Biol. Chem. 267:679–682.
  • Pugh, B. F., and R. Tjian. 1991. Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev. 5:1935–1945.
  • Quinn, P. G.. 1993. Distinct activation domains within cAMP response element-binding protein (CREB) mediate basal and cAMP-stimulated transcription. J. Biol. Chem. 268:16999–17009.
  • Quinn, P. G., and D. K. Granner. 1990. Cyclic AMP-dependent protein kinase regulates transcription of the phosphoenolpyruvate carboxykinase gene but not binding of nuclear factors to the cyclic AMP regulatory element. Mol. Cell. Biol. 10:3357–3364.
  • Quinn, P. G., T. W. Wong, M. A. Magnuson, J. B. Shabb, and D. K. Granner. 1988. Identification of basal and cyclic AMP regulatory elements in the promoter of the phosphoenolpyruvate carboxykinase gene. Mol. Cell. Biol. 8:3467–3475.
  • Radhakrishnan, I., G. C. Perez-Alvarado, D. Parker, H. J. Dyson, M. R. Montminy, and P. E. Wright. 1997. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 91:741–752.
  • Reinberg, D., M. Horikoshi, and R. G. Roeder. 1987. Factors involved in specific transcription in mammalian RNA polymerase II. Functional analysis of initiation factors IIA and IID and identification of a new factor operating at sequences downstream of the initiation site. J. Biol. Chem. 262:3322–3330.
  • Reinberg, D., and R. G. Roeder. 1987. Factors involved in specific transcription by mammalian RNA polymerase II. Purification and functional analysis of initiation factors IIB and IIE. J. Biol. Chem. 262:3310–3321.
  • Reinberg, D., and R. G. Roeder. 1987. Factors involved in specific transcription by mammalian RNA polymerase II. Transcription factor IIS stimulates elongation of RNA chains. J. Biol. Chem. 262:3331–3337.
  • Roberts, S. G., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1993. Interaction between an acidic activator and transcription factor TFIIB is required for transcriptional activation. Nature 363:741–744.
  • Roberts, S. G. E., B. Choy, S. S. Walker, Y.-S. Lin, and M. R. Green. 1995. A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Curr. Biol. 5:508–516.
  • Ryu, S., S. Zhou, A. G. Ladurner, and R. Tjian. 1999. The transcriptional cofactor CRSP is required for activity of the enhancer-binding protein Sp1. Nature 397:446–450.
  • Saluja, D., M. Vassallo, and N. Tanese. 1998. Distinct subdomains of human TAFII130 are required for interactions with glutamine-rich transcriptional activators. Mol. Cell. Biol. 18:5734–5743.
  • Sauer, F., S. K. Hansen, and R. Tjian. 1995. Multiple TAFIIs directing synergistic activation of transcription. Science 270:1783–1788.
  • Sauer, F., D. Wassarman, G. Rubin, and R. Tjian. 1996. TAFII's mediate activation of transcription in the Drosophila embryo. Cell 87:1271–1284.
  • Sun, P., H. Enslen, P. S. Myung, and R. A. Maurer. 1994. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 8:2527–2539.
  • Tanese, N., D. Saluja, M. F. Vassallo, J. L. Chen, and A. Admon. 1996. Molecular cloning and analysis of two subunits of the human TFIID complex: hTAFII130 and hTAFII100. Proc. Natl. Acad. Sci. USA 93:13611–13616.
  • Thut, C. J., J. Chen, R. Klemm, and R. Tjian. 1995. p53 transcriptional activation mediated by coactivators TAFII40 and TAFII60. Science 267:100–103.
  • Van Dyke, M. W., M. Sawadogo, and R. G. Roeder. 1989. Stability of transcription complexes on class II genes. Mol. Cell. Biol. 9:342–344.
  • Weil, P. A., D. S. Luse, J. Segall, and R. G. Roeder. 1979. Selective and accurate transcription of the Ad2 major late promoter in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18:469–484.
  • Xie, H., and T. L. Rothstein. 1995. Protein kinase C mediates activation of nuclear cAMP response element-binding protein (CREB) in B lymphocytes stimulated through surface Ig. J. Immunol. 154:1717–1723.
  • Xing, L., V. K. Gopal, and P. G. Quinn. 1995. cAMP response element-binding protein (CREB) interacts with transcription factors IIB and IID. J. Biol. Chem. 270:17488–17493.
  • Yang, C., L. H. Shapiro, M. Rivera, A. Kumar, and P. K. Brindle. 1998. A role for CREB binding protein and p300 transcriptional coactivators in Ets-1 transactivation functions. Mol. Cell. Biol. 18:2218–2229.
  • Yang, W., and L. P. Freedman. 1999. 20-Epi analogues of 1,25-dihydroxyvitamin D3 are highly potent inducers of DRIP coactivator complex binding to the vitamin D3 receptor. J. Biol. Chem. 274:16838–16845.
  • Zawel, L., and D. Reinberg. 1995. Common themes in assembly and function of eukaryotic transcription complexes. Annu. Rev. Biochem. 64:533–561.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.