19
Views
80
CrossRef citations to date
0
Altmetric
Cell Growth and Development

p21Cip1 and p27Kip1Regulate Cell Cycle Reentry after Hypoxic Stress but Are Not Necessary for Hypoxia-Induced Arrest

, &
Pages 1196-1206 | Received 15 Jun 2000, Accepted 06 Nov 2000, Published online: 28 Mar 2023

REFERENCES

  • Amellem, O., J. A. Sandvik, T. Stokke, and E. O. Pettersen. 1998. The retinoblastoma protein-associated cell cycle arrest in S-phase under moderate hypoxia is disrupted in cells expressing HPV18 E7 oncoprotein. Br. J. Cancer 77:862–872.
  • Amellem, O., T. Stokke, J. Sandvik, and E. Pettersen. 1996. The retinoblastoma gene product is reversibly dephosphorylated and bound in the nucleus in S and G2 phases during hypoxic stress. Exp. Cell Res. 227:106–115.
  • Balin, A. K., A. J. Fisher, and D. M. Carter. 1984. Oxygen modulates growth of human cells at physiologic partial pressures. J. Exp. Med. 160:152–166.
  • Brugarolas, J., K. Moberg, S. D. Boyd, Y. Taya, T. Jacks, and J. A. Lees. 1999. Inhibition of cyclin-dependent kinase 2 by p21 is necessary for retinoblastoma protein-mediated G1 arrest after gamma-irradiation. Proc. Natl. Acad. Sci. USA 96:1002–1007.
  • Carmeliet, P., Y. Dor, J. M. Herbert, D. Fukumura, K. Brusselmans, M. Dewerchin, M. Neeman, F. Bono, R. Abramovitch, P. Maxwell, C. J. Koch, P. Ratcliffe, L. Moons, R. K. Jain, D. Collen, and E. Keshert. 1998. Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394:485–490 (Erratum, 395:525.)
  • Coats, S., W. M. Flanagan, J. Nourse, and J. M. Roberts. 1996. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272:877–880.
  • Coats, S., P. Whyte, M. L. Fero, S. Lacy, G. Chung, E. Randel, E. Firpo, and J. M. Roberts. 1999. A new pathway for mitogen-dependent cdk2 regulation uncovered in p27(Kip1)-deficient cells. Curr. Biol. 9:163–173.
  • D'Anna, J. A., J. G. Valdez, R. C. Habbersett, and H. A. Crissman. 1997. Association of G1/S-phase and late S-phase checkpoints with regulation of cyclin-dependent kinases in Chinese hamster ovary cells. Radiat. Res. 148:260–271.
  • Deng, C., P. Zhang, J. W. Harper, S. J. Elledge, and P. Leder. 1995. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82:675–684.
  • Denko, N. C., S. L. Green, D. Edwards, and A. J. Giaccia. 2000. p53 checkpoint-defective cells are sensitive to X rays, but not hypoxia. Exp. Cell Res. 258:82–91.
  • Gekeler, V., J. Epple, G. Kleymann, and H. Probst. 1993. Selective and synchronous activation of early-S-phase replicons of Ehrlich ascites cells. Mol. Cell. Biol. 13:5020–5033.
  • Graeber, T. G., J. F. Peterson, M. Tsai, K. Monica, A. J. Fornace Jr., and A. J. Giaccia. 1994. Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol. Cell. Biol. 14:6264–6277.
  • Green, S. L., and A. J. Giaccia. 1998. Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy. Cancer J. Sci. Am. 4:218–223.
  • Gu, Y., J. Rosenblatt, and D. O. Morgan. 1992. Cell cycle regulation of CDK2 activity by phosphorylation of Thr160 and Tyr15. EMBO J. 11:3995–4005.
  • Kallinowski, F., R. Zander, M. Hoeckel, and P. Vaupel. 1990. Tumor tissue oxygenation as evaluated by computerized-pO2-histography. Int. J. Radiat. Oncol. Biol. Phys. 19:953–961.
  • Krtolica, A., N. A. Krucher, and J. W. Ludlow. 1998. Hypoxia-induced pRB hypophosphorylation results from downregulation of CDK and upregulation of PP1 activities. Oncogene 17:2295–304.
  • Krtolica, A., N. A. Krucher, and J. W. Ludlow. 1999. Molecular analysis of selected cell cycle regulatory proteins during aerobic and hypoxic maintenance of human ovarian carcinoma cells. Br. J. Cancer 80:1875–1883.
  • Krtolica, A., and J. W. Ludlow. 1996. Hypoxia arrests ovarian carcinoma cell cycle progression, but invasion is unaffected. Cancer Res. 56:1168–1173.
  • Linke, S. P., K. C. Clarkin, A. D. Di Leonardo, A. Tsou, and G. M. Wahl. 1996. A reversible, p53-dependent G0/G1 cell cycle arrest induced by ribonucleotide depletion in the absence of detectable DNA damage. Genes Dev. 10:934–947.
  • Loffler, M.. 1985. Characterization of the deoxynucleoside-dependent reversal of hypoxia-induced inhibition of cell cycle progression in Ehrlich ascites tumor cells. Eur. J. Cell Biol. 39:198–204.
  • Loffler, M.. 1992. A cytokinetic approach to determine the range of O2-dependence of pyrimidine(deoxy)nucleotide biosynthesis relevant for cell proliferation. Cell Prolif. 25:169–179.
  • Loffler, M.. 1987. Restimulation of cell cycle progression by hypoxic tumour cells with deoxynucleosides requires ppm oxygen tension. Exp. Cell Res. 169:255–261.
  • Loffler, M., J. Jockel, G. Schuster, and C. Becker. 1997. Dihydroorotat-ubiquinone oxidoreductase links mitochondria in the biosynthesis of pyrimidine nucleotides. Mol. Cell Biochem. 174:125–129.
  • Ludlow, J. W., R. L. Howell, and H. C. Smith. 1993. Hypoxic stress induces reversible hypophosphorylation of pRB and reduction in cyclin A abundance independent of cell cycle progression. Oncogene 8:331–339.
  • Matsumoto, Y., K. Hayashi, and E. Nishida. 1999. Cyclin-dependent kinase 2 (Cdk2) is required for centrosome duplication in mammalian cells. Curr. Biol. 9:429–432.
  • McGrath, S. A.. 1998. Induction of p21WAF/CIP1 during hyperoxia. Am. J. Respir. Cell Mol. Biol. 18:179–187.
  • Ohtsubo, M., A. M. Theodoras, J. Schumacher, J. M. Roberts, and M. Pagano. 1995. Human cyclin E, a nuclear protein essential for the G1-to-S phase transition. Mol. Cell. Biol. 15:2612–2624.
  • Poon, R. Y., H. Toyoshima, and T. Hunter. 1995. Redistribution of the CDK inhibitor p27 between different cyclin-CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol. Biol. Cell 6:1197–1213.
  • Probst, G., H. J. Riedinger, P. Martin, M. Engelcke, and H. Probst. 1999. Fast control of DNA replication in response to hypoxia and to inhibited protein synthesis in CCRF-CEM and HeLa cells. Biol. Chem. 380:1371–1382.
  • Probst, H., H. Schiffer, V. Gekeler, H. Kienzle-Pfeilsticker, U. Stropp, K. Stotzer, and I. Frenzel-Stotzer. 1988. Oxygen dependent regulation of DNA synthesis and growth of Ehrlich ascites tumor cells in vitro and in vivo. Cancer Res. 48:2053–2060.
  • Probst, H., H. Schiffer, V. Gekeler, and K. Scheffler. 1989. Oxygen-dependent regulation of mammalian ribonucleotide reductase in vivo and possible significance for replicon initiation. Biochem. Biophys. Res. Commun. 163:334–340.
  • Riedinger, H. J., V. Gekeler, and H. Probst. 1992. Reversible shutdown of replicon initiation by transient hypoxia in Ehrlich ascites cells. Dependence of initiation on short-lived protein. Eur. J. Biochem. 210:389–398.
  • Robson, C. N., V. Gnanapragasam, R. L. Byrne, A. T. Collins, and D. E. Neal. 1999. Transforming growth factor-beta1 up-regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. J. Endocrinol. 160:257–266.
  • Sebastian, B., A. Kakizuka, and T. Hunter. 1993. Cdc25M2 activation of cyclin-dependent kinases by dephosphorylation of threonine-14 and tyrosine-15. Proc. Natl. Acad. Sci. USA 90:3521–3524.
  • Tannock, I. F., and R. P. Hill. 1992. The basic science of oncology, 2nd ed. McGraw-Hill, Inc., New York, N.Y
  • Thelander, L., A. Graslund, and M. Thelander. 1983. Continual presence of oxygen and iron required for mammalian ribonucleotide reduction: possible regulation mechanism. Biochem. Biophys. Res. Commun. 110:859–865.
  • Vaupel, P., K. Schlenger, C. Knoop, and M. Hockel. 1991. Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res. 51:3316–3322.
  • Wilson, R. E., P. C. Keng, and R. M. Sutherland. 1990. Changes in growth characteristics and macromolecular synthesis on recovery from severe hypoxia. Br. J. Cancer 61:14–21.
  • Yakes, F. M., and B. Van Houten. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94:514–519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.