45
Views
130
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Strong Functional Interactions of TFIIH with XPC and XPG in Human DNA Nucleotide Excision Repair, without a Preassembled Repairosome

, &
Pages 2281-2291 | Received 06 Dec 2000, Accepted 16 Jan 2001, Published online: 27 Mar 2023

REFERENCES

  • Adamczewski, J. P., M. Rossignol, J. P. Tassan, E. A. Nigg, V. Moncollin, and J. M. Egly. 1996. MAT1, cdk7 and cyclin H form a kinase complex which is UV light-sensitive upon association with TFIIH. EMBO J. 15:1877–1884.
  • Araújo, S. J., F. Tirode, F. Coin, H. Pospiech, J. E. Syväoja, M. Stucki, U. Hübscher, J.-M. Egly, and R. D. Wood. 2000. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH and modulation by CAK. Genes Dev. 14:349–359.
  • Araújo, S. J., and R. D. Wood. 1999. Protein complexes in nucleotide excision repair. Mutat. Res. 435:23–33.
  • Bardwell, A. J., L. Bardwell, N. Iyer, J. Q. Svejstrup, W. J. Feaver, R. D. Kornberg, and E. C. Friedberg. 1994. Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH). Mol. Cell. Biol. 14:3569–3576.
  • Batty, D. P., V. R. Otrin, A. S. Levine, and R. D. Wood. 2000. Stable binding of human XPC-hHR23B complex to irradiated DNA confers strong discrimination for damaged sites. J. Mol. Biol. 300:275–290.
  • Bessho, T., A. Sancar, L. H. Thompson, and M. P. Thelen. 1997. Reconstitution of human excision nuclease with recombinant XPF-ERCC1 complex. J. Biol. Chem. 272:3833–3837.
  • Chang, W. H., and R. D. Kornberg. 2000. Electron crystal structure of the transcription factor and DNA repair complex, core TFIIH. Cell 102:609–613.
  • Constantinou, A., D. Gunz, E. Evans, P. Lalle, P. A. Bates, R. D. Wood, and S. G. Clarkson. 1999. Conserved residues of human XPG protein important for nuclease activity and function in nucleotide excision repair. J. Biol. Chem. 274:5637–5648.
  • Cooper, P. K., T. Nouspikel, S. G. Clarkson, and S. A. Leadon. 1997. Defective transcription-coupled repair of oxidative base damage in Cockayne Syndrome patients from XP group G. Science 275:990–993.
  • de Laat, W. L., N. G. J. Jaspers, and J. H. J. Hoeijmakers. 1999. Molecular mechanism of nucleotide excision repair. Genes Dev. 13:768–785.
  • Drapkin, R., G. Le Roy, H. Cho, S. Akoulitchev, and D. Reinberg. 1996. Human cyclin-dependent kinase-activating kinase exists in three distinct complexes. Proc. Natl. Acad. Sci. USA 93:6488–6493.
  • Drapkin, R., J. T. Reardon, A. Ansari, J. C. Huang, L. Zawel, K. J. Ahn, A. Sancar, and D. Reinberg. 1994. Dual role of TFIIH in DNA excision-repair and in transcription by RNA-polymerase-II. Nature 368:769–772.
  • Evans, E., J. Fellows, A. Coffer, and R. D. Wood. 1997. Open complex formation around a lesion during nucleotide excision repair provides a structure for cleavage by human XPG protein. EMBO J. 16:625–638.
  • Evans, E., J. G. Moggs, J. R. Hwang, J.-M. Egly, and R. D. Wood. 1997. Mechanism of open complex and dual incision formation by human nucleotide excision repair factors. EMBO J. 16:6559–6573.
  • Feaver, W. J., W. Y. Huang, O. Gileadi, L. Myers, C. M. Gustafsson, R. D. Kornberg, and E. C. Friedberg. 2000. Subunit interactions in yeast transcription/repair factor TFIIH—requirement for Tfb3 subunit in nucleotide excision repair. J. Biol. Chem. 275:5941–5946.
  • Guzder, S. N., P. Sung, L. Prakash, and S. Prakash. 1996. Nucleotide excision-repair in yeast is mediated by sequential assembly of repair factors and not by a pre-assembled repairosome. J. Biol. Chem. 271:8903–8910.
  • Habraken, Y., P. Sung, S. Prakash, and L. Prakash. 1996. Transcription factor TFIIH and DNA endonuclease Rad2 constitute yeast nucleotide excision-repair factor-3—implications for nucleotide excision-repair and Cockayne-syndrome. Proc. Natl. Acad. Sci. USA 93:10718–10722.
  • He, Z., L. A. Henricksen, M. S. Wold, and C. J. Ingles. 1995. RPA involvement in the damage-recognition and incision steps of nucleotide excision repair. Nature 374:566–569.
  • He, Z. G., and C. J. Ingles. 1997. Isolation of human complexes proficient in nucleotide excision repair. Nucleic Acids Res. 25:1136–1141.
  • Houtsmuller, A. B., S. Rademakers, A. L. Nigg, D. Hoogstraten, J. H. J. Hoeijmakers, and W. Vermeulen. 1999. Action of DNA repair endonuclease ERCC1/XPF in living cells. Science 284:958–961.
  • Iyer, N., M. S. Reagan, K. J. Wu, B. Canagarajah, and E. C. Friedberg. 1996. Interactions involving the human RNA-polymerase-II transcription/nucleotide excision-repair complex TFIIH, the nucleotide excision repair protein XPG, and Cockayne syndrome group-B (CSB) protein. Biochemistry 35:2157–2167.
  • Kenny, M. K., U. Schlegel, H. Furneaux, and J. Hurwitz. 1990. The role of human single-stranded DNA binding protein and its individual subunits in simian virus 40 DNA replication. J. Biol. Chem. 265:7693–7700.
  • Kimura, H., Y. Tao, R. G. Roeder, and P. R. Cook. 1999. Quantitation of RNA polymerase II and its transcription factors in a HeLa cell: little soluble holoenzyme but significant amounts of polymerases attached to the nuclear substructure. Mol. Cell. Biol. 19:5383–5392.
  • Köberle, B., J. R. W. Masters, J. A. Hartley, and R. D. Wood. 1999. Defective repair of cisplatin-induced DNA damage caused by reduced XPA protein in testicular germ cell tumours. Curr. Biol. 9:273–276.
  • Lee, S. H., D. K. Kim, and R. Drissi. 1995. Human xeroderma-pigmentosum group-A protein interacts with human replication protein-A and inhibits DNA-replication. J. Biol. Chem. 270:21800–21805.
  • LePage, F., E. E. Kwoh, A. Avrutskaya, A. Gentil, S. A. Leadon, A. Sarasin, and P. K. Cooper. 2000. Transcription-coupled repair of 8-oxoguanine: requirement for XPG, TFIIH, and CSB and implications for Cockayne syndrome. Cell 101:159–171.
  • Li, L., S. J. Elledge, C. A. Peterson, E. S. Bales, and R. J. Legerski. 1994. Specific association between the human DNA repair proteins XPA and ERCC1. Proc. Natl. Acad. Sci. USA 91:5012–5016.
  • Li, L., X. Y. Lu, C. A. Peterson, and R. J. Legerski. 1995. An interaction between the DNA repair factor XPA and replication protein A appears essential for nucleotide excision repair. Mol. Cell. Biol. 15:5396–5402.
  • Li, L., C. A. Peterson, X. Y. Lu, and R. J. Legerski. 1995. Mutations in XPA that prevent association with ERCC1 are defective in nucleotide excision repair. Mol. Cell. Biol. 15:1993–1998.
  • Li, R. Y., P. Calsou, C. J. Jones, and B. Salles. 1998. Interactions of the transcription/DNA repair factor TFIIH and XP repair proteins with DNA lesions in a cell-free repair assay. J. Mol. Biol. 281:211–218.
  • Lindahl, T., and R. D. Wood. 1999. Quality control by DNA repair. Science 286:1897–1905.
  • Maldonado, E., R. Shiekhattar, M. Sheldon, H. Cho, R. Drapkin, P. Rickert, E. Lees, C. W. Anderson, S. Linn, and D. Reinberg. 1996. A human RNA-polymerase-II complex-associated with srb and DNA-repair proteins. Nature 381:86–89.
  • Manley, J. L., A. Fire, M. Samuels, and P. A. Sharp. 1983. In vitro transcription: whole cell extract. Methods Enzymol. 101:568–582.
  • Marinoni, J. C., M. E. Rossignol, and J. M. Egly. 1997. Purification of the transcription/repair factor TFIIH and evaluation of its associated activities in vitro. Methods 12:235–253.
  • Matsuda, T., M. Saijo, I. Kuraoka, T. Kobayashi, Y. Nakatsu, A. Nagai, T. Enjoji, C. Masutani, K. Sugasawa, F. Hanaoka, A. Yasui, and K. Tanaka. 1995. DNA-repair protein XPA binds replication protein-A (RPA). J. Biol. Chem. 270:4152–4157.
  • Matsunaga, T., D. Mu, C. H. Park, J. T. Reardon, and A. Sancar. 1995. Human DNA-repair excision nuclease—analysis of the roles of the subunits involved in dual incisions by using anti-XPG and anti-ERCC1 antibodies. J. Biol. Chem. 270:20862–20869.
  • Miura, N., I. Miyamoto, H. Asahina, I. Satokata, K. Tanaka, and Y. Okada. 1991. Identification and characterization of XPAC protein, the gene product of the human XPAC (xeroderma pigmentosum group A complementing) gene. J. Biol. Chem. 266:19786–19789.
  • Mu, D., D. S. Hsu, and A. Sancar. 1996. Reaction-mechanism of human DNA-repair excision nuclease. J. Biol. Chem. 271:8285–8294.
  • Mu, D., C. H. Park, T. Matsunaga, D. S. Hsu, J. T. Reardon, and A. Sancar. 1995. Reconstitution of human DNA-repair excision nuclease in a highly defined system. J. Biol. Chem. 270:2415–2418.
  • Mu, D., M. Wakasugi, D. S. Hsu, and A. Sancar. 1997. Characterization of reaction intermediates of human excision-repair nuclease. J. Biol. Chem. 272:28971–28979.
  • Nocentini, S., F. Coin, M. Saijo, K. Tanaka, and J. M. Egly. 1997. DNA-damage recognition by XPA protein promotes efficient recruitment of transcription factor IIH. J. Biol. Chem. 272:22991–22994.
  • Nouspikel, T., P. Lalle, S. A. Leadon, P. K. Cooper, and S. G. Clarkson. 1997. A common mutational pattern in xeroderma pigmentosum group G/Cockayne syndrome patients: implications for a second XPG function. Proc. Natl. Acad. Sci. USA 94:3116–3121.
  • O'Donovan, A., A. A. Davies, J. G. Moggs, S. C. West, and R. D. Wood. 1994. XPG endonuclease makes the 3′ incision in human DNA nucleotide excision repair. Nature 371:432–435.
  • Ossipow, V., J. P. Tassan, E. A. Nigg, and U. Schibler. 1995. A mammalian RNA polymerase II holoenzyme containing all components required for promoter-specific transcription initiation. Cell 83:137–146.
  • Otrin, V., I. Kuraoka, T. Nardo, M. McLenigan, A. Eker, M. Stefanini, A. Levine, and R. Wood. 1998. Relationship of the xeroderma pigmentosum group E DNA repair defect to the chromatin and DNA binding proteins UV-DDB and replication protein A. Mol. Cell. Biol. 18:3182–3190.
  • Park, C. H., D. Mu, J. T. Reardon, and A. Sancar. 1995. The general transcription-repair factor TFIIH is recruited to the excision-repair complex by the XPA protein independent of the TFIIE transcription factor. J. Biol. Chem. 270:4896–4902.
  • Park, C. H., and A. Sancar. 1994. Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision-repair proteins. Proc. Natl. Acad. Sci. USA 91:5017–5021.
  • Reardon, J. T., H. Ge, E. Gibbs, A. Sancar, J. Hurwitz, and Z. Q. Pan. 1996. Isolation and characterization of 2 human transcription factor IIH (TFIIH)-related complexes—ERCC2/CAK and TFIIH. Proc. Natl. Acad. Sci. USA 93:6482–6487.
  • Rodriguez, K., J. Talamantez, W. Huang, S. H. Reed, Z. Wang, L. Chen, W. J. Feaver, E. C. Friedberg, and A. E. Tomkinson. 1998. Affinity purification and partial characterization of a yeast multiprotein complex for nucleotide excision repair using histidine-tagged Rad14 protein. J. Biol. Chem. 273:34180–34189.
  • Rossignol, M., I. Kolb-Cheynel, and J. M. Egly. 1997. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 16:1628–1637.
  • Saijo, M., I. Kuraoka, C. Masutani, F. Hanaoka, and K. Tanaka. 1996. Sequential binding of DNA-repair proteins RPA and ERCC1 to XPA in vitro. Nucleic Acids Res. 24:4719–4724.
  • Satokata, I., K. Tanaka, N. Miura, I. Miyamoto, Y. Satoh, S. Kondo, and Y. Okada. 1990. Characterization of a splicing mutation in group-A xeroderma pigmentosum. Proc. Natl. Acad. Sci. USA 87:9908–9912.
  • Schultz, P., S. Fribourg, A. Poterszman, V. Mallouh, D. Moras, and J. M. Egly. 2000. Molecular structure of human TFIIH. Cell 102:599–607.
  • Schweizer, U., T. Hey, G. Lipps, and G. Krauss. 1999. Photocrosslinking locates a binding site for the large subunit of human replication protein A to the damaged strand of cisplatin-modified DNA. Nucleic Acids Res. 27:3183–3189.
  • Shivji, M. K. K., M. K. Kenny, and R. D. Wood. 1992. Proliferating cell nuclear antigen is required for DNA excision repair. Cell 69:367–374.
  • Shivji, M. K. K., J. G. Moggs, I. Kuraoka, and R. D. Wood. 1999. Dual incision assays for nucleotide excision repair using DNA with a lesion at a specific site. DNA repair protocols: eukaryotic systems. D. S. Henderson. 113:373–392. Humana Press, Totowa, N.J
  • Sijbers, A. M., W. L. de Laat, R. R. Ariza, M. Biggerstaff, Y.-F. Wei, J. G. Moggs, K. C. Carter, B. K. Shell, E. Evans, M. C. de Jong, S. Rademakers, J. de Rooij, N. G. J. Jaspers, J. H. J. Hoeijmakers, and R. D. Wood. 1996. Xeroderma pigmentosum group F caused by a defect in a structure-specific DNA repair endonuclease. Cell 86:811–822.
  • Stigger, E., R. Drissi, and S. Lee. 1998. Functional-analysis of human replication protein-A in nucleotide excision-repair. J. Biol. Chem. 273:9337–9343.
  • Sugasawa, K., J. M. Y. Ng, C. Masutani, I. S., P. J. van der Spek, A. P. M. Eker, F. Hanaoka, D. Bootsma, and J. H. J. Hoeijmakers. 1998. Xeroderma pigmentosum group C protein complex is the initiator of global genome nucleotide excision repair. Mol. Cell 2:223–232.
  • Svejstrup, J., P. Vichi, and J.-M. Egly. 1996. The multiple roles of transcription/repair factor TFIIH. Trends Biochem. Sci. 21:346–350.
  • Svejstrup, J. Q., Z. Wang, W. J. Feaver, X. Wu, D. A. Bushnell, T. F. Donahue, E. C. Friedberg, and R. D. Kornberg. 1995. Different forms of TFIIH for transcription and DNA repair: holo-TFIIH and a nucleotide excision repairosome. Cell 80:21–28.
  • van der Spek, P. J., A. Eker, S. Rademakers, C. Visser, K. Sugasawa, C. Masutani, F. Hanaoka, D. Bootsma, and J. H. J. Hoeijmakers. 1996. XPC and human homologs of Rad23—intracellular localization and relationship to other nucleotide excision repair complexes. Nucleic Acids Res. 24:2551–2559.
  • Wang, Y., D. Cortez, P. Yazdi, N. Neff, S. J. Elledge, and J. Qin. 2000. BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14:927–939.
  • Winkler, G. S., W. Vermeulen, F. Coin, J. M. Egly, J. H. J. Hoeijmakers, and G. Weeda. 1998. Affinity purification of human DNA-repair transcription factor TFIIH using epitope-tagged xeroderma-pigmentosum B-protein. J. Biol. Chem. 273:1092–1098.
  • Wold, M. S.. 1997. Replication protein A: a heterotrimeric single-stranded DNA binding protein required for eukaryotic DNA metabolism. Annu. Rev. Biochem. 66:61–92.
  • Wood, R. D., M. Biggerstaff, and M. K. K. Shivji. 1995. Detection and measurement of nucleotide excision repair synthesis by mammalian cell extracts in vitro. Methods 7:163–175.
  • Yankulov, K. Y., and D. L. Bentley. 1997. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J. 16:1638–1646.
  • Yokoi, M., C. Masutani, T. Maekawa, K. Sugasawa, Y. Ohkuma, and F. Hanaoka. 2000. The xeroderma pigmentosum group C protein complex XPC-HR23B plays an important role in the recruitment of transcription factor IIH to damaged DNA. J. Biol. Chem. 275:9870–9875.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.