53
Views
52
CrossRef citations to date
0
Altmetric
Gene Expression

Mitochondrial Translation of Saccharomyces cerevisiae COX2 mRNA Is Controlled by the Nucleotide Sequence Specifying the Pre-Cox2p Leader Peptide

, &
Pages 2359-2372 | Received 08 Sep 2000, Accepted 19 Jan 2001, Published online: 27 Mar 2023

REFERENCES

  • Anderson, D. K., and A. Newton. 1997. Posttranscriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint. J. Bacteriol. 179:2281–2288.
  • Anderson, D. M., and O. Schneewind. 1997. A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278:1140–1143.
  • Anderson, S., M. H. L. De Bruijn, A. R. Coulson, I. C. Eperon, F. Sanger, and I. G. Young. 1982. Complete sequence of bovine mitochondrial DNA: conserved features of the mammalian mitochondrial genome. J. Mol. Biol. 156:683–717.
  • Behrens, M., G. Michaelis, and E. Pratje. 1991. Mitochondrial inner membrane protease 1 of Saccharomyces cerevisiae shows sequence similarity to the Escherichia coli leader peptidase. Mol. Gen. Genet. 228:167–176.
  • Bonnefoy, N., F. Chalvet, P. Hamel, P. P. Slonimski, and G. Dujardin. 1994. OXA1, a Saccharomyces cerevisiae nuclear gene whose sequence is conserved from prokaryotes to eukaryotes controls cytochrome oxidase biogenesis. J. Mol. Biol. 239:201–212.
  • Bonnefoy, N., and T. D. Fox. 2000. In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation. Mol. Gen. Genet. 262:1036–1046.
  • Bonnefoy, N., and T. D. Fox. 2001. Genetic transformation of Saccharomyces cerevisiae mitochondria. Methods Cell Biol. 65:381–396.
  • Chen, D. C., B. C. Yang, and T. T. Kuo. 1992. One-step transformation of yeast in stationary phase. Curr. Genet. 21:83–84.
  • Choquet, Y., D. B. Stern, K. Wostrikoff, R. Kuras, J. Girard-Bascou, and F. A. Wollman. 1998. Translation of cytochrome f is autoregulated through the 5′ untranslated region of petA mRNA in Chlamydomonas chloroplasts. Proc. Natl. Acad. Sci. USA 95:4380–4385.
  • Costanzo, M. C., N. Bonnefoy, E. H. Williams, G. D. Clark-Walker, and T. D. Fox. 2000. Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts. Genetics 154:999–1012.
  • Dunstan, H. M., N. S. Green-Willms, and T. D. Fox. 1997. In vivo analysis of Saccharomyces cerevisiae COX2 mRNA 5′-untranslated leader functions in mitochondrial translation initiation and translational activation. Genetics 147:87–100.
  • Eistetter, A. J., P. D. Butler, R. R. Traut, and T. G. Fanning. 1999. Characterization of Escherichia coli 50S ribosomal protein L31. FEMS Microbiol. Lett. 180:345–349.
  • Folley, L. S., and T. D. Fox. 1991. Site-directed mutagenesis of a Saccharomyces cerevisiae mitochondrial translation initiation codon. Genetics 129:659–668.
  • Fox, T. D.. 1996. Genetics of mitochondrial translation. Translational control.. J. W. B. Hershey, M. B. Matthews, and N. Sonenberg. 733–758. Cold Spring Harbor Press, Cold Spring Harbor, N.Y
  • Fox, T. D., L. S. Folley, J. J. Mulero, T. W. McMullin, P. E. Thorsness, L. O. Hedin, and M. C. Costanzo. 1991. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol. 194:149–165.
  • Freymann, D. M., R. J. Keenan, R. M. Stroud, and P. Walter. 1997. Structure of the conserved GTPase domain of the signal recognition particle. Nature 385:361–364.
  • Green-Willms, N. S., C. A. Butler, H. M. Dunstan, and T. D. Fox. Pet111p, an inner membrane-bound translational activator that limits expression of the Saccharomyces cerevisiae mitochondrial gene COX2. J. Biol. Chem., in press.
  • Grivell, L. A.. 1995. Nucleo-mitochondrial interactions in mitochondrial gene expression. Crit. Rev. Biochem. Mol. Biol. 30:121–164.
  • Grivell, L. A., M. Artal-Sanz, G. Hakkaart, L. de Jong, L. G. Nijtmans, K. van Oosterum, M. Siep, and H. van der Spek. 1999. Mitochondrial assembly in yeast. FEBS Lett. 452:57–60.
  • Hardy, C. M., and G. D. Clark-Walker. 1990. Nucleotide sequence of the cytochrome oxidase subunit 2 and Val-tRNA genes and surrounding sequences from Kluyveromyces lactis K8 mitochondrial DNA. Yeast 6:403–410.
  • He, S., and T. D. Fox. 1997. Membrane translocation of mitochondrially coded Cox2p: distinct requirements for export of amino- and carboxy-termini, and dependence on the conserved protein Oxalp. Mol. Biol. Cell 8:1449–1460.
  • Hell, K., J. Herrmann, E. Pratje, W. Neupert, and R. A. Stuart. 1997. Oxa1p mediates the export of the N- and C-termini of pCoxII from the mitochondrial matrix to the intermembrane space. FEBS Lett. 418:367–370.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77:51–59.
  • Hoeben, P., G. Weiller, and G. D. Clark-Walker. 1993. Larger rearranged mitochondrial genomes in Dekkera/Brettanomyces yeasts are more closely related than smaller genomes with a conserved gene order. J. Mol. Evol. 36:263–269.
  • Johnston, S. A., P. Q. Anziano, K. Shark, J. C. Sanford, and R. A. Butow. 1988. Mitochondrial transformation in yeast by bombardment with microprojectiles. Science 240:1538–1541.
  • Kermorgant, M., N. Bonnefoy, and G. Dujardin. 1997. Oxa1p, which is required for cytochrome c oxidase and ATP synthase complex formation, is embedded in the mitochondrial inner membrane. Curr. Genet. 31:302–307.
  • Kitakawa, M., H.-R. Graack, L. Grohmann, S. Goldschmidt-Reisin, E. Herfurth, B. Wittmann-Liebold, T. Nishimura, and K. Isono. 1997. Identification and characterization of genes for mitochondrial ribosomal proteins of Saccharomyces cerevisiae. Eur. J. Biochem. 245:449–456.
  • Mathews, D. H., J. Sabina, M. Zuker, and D. H. Turner. 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288:911–940.
  • Michon, T., M. Galante, and J. Velours. 1988. NH2-terminal sequence of the isolated yeast ATP synthase subunit 6 reveals post-translational cleavage. Eur. J. Biochem. 172:621–625.
  • Mulero, J. J., and T. D. Fox. 1993. Alteration of the Saccharomyces cerevisiae COX2 5′-untranslated leader by mitochondrial gene replacement and functional interaction with the translational activator protein PET111. Mol. Biol. Cell 4:1327–1335.
  • Mulero, J. J., and T. D. Fox. 1993. PET111 acts in the 5′-leader of the Saccharomyces cerevisiae mitochondrial COX2 mRNA to promote its translation. Genetics 133:509–516.
  • Mulero, J. J., and T. D. Fox. 1994. Reduced but accurate translation from a mutant AUA initiation codon in the mitochondrial COX2 mRNA of Saccharomyces cerevisiae. Mol. Gen. Genet. 242:383–390.
  • Myers, A. M., L. K. Pape, and A. Tzagoloff. 1985. Mitochondrial protein synthesis is required for maintenance of intact mitochondrial genomes in Saccharomyces cerevisiae. EMBO J. 4:2087–2092.
  • Nasmyth, K. A., and K. Tatchell. 1980. The structure of transposable yeast mating type loci. Cell 19:753–764.
  • Neff, N. F., J. H. Thomas, P. Grisafi, and D. Botstein. 1983. Isolation of the β-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33:211–219.
  • Nunnari, J., T. D. Fox, and P. Walter. 1993. A mitochondrial protease with two catalytic subunits of nonoverlapping specificities. Science 262:1997–2004.
  • Pinkham, J. L., A. M. Dudley, and T. L. Mason. 1994. T7 RNA polymerase-dependent expression of COXII in yeast mitochondria. Mol. Cell. Biol. 14:4643–4652.
  • Poutre, C. G., and T. D. Fox. 1987. PET111, a Saccharomyces cerevisiae nuclear gene required for translation of the mitochondrial mRNA encoding cytochrome c oxidase subunit II. Genetics 115:637–647.
  • Poyton, R. O., D. M. J. Duhl, and G. H. D. Clarkson. 1992. Protein export from the mitochondrial matrix. Trends Cell Biol. 2:369–375.
  • Pratje, E., G. Mannhaupt, G. Michaelis, and K. Beyreuther. 1983. A nuclear mutation prevents processing of a mitochondrially encoded membrane protein in Saccharomyces cerevisiae. EMBO J. 2:1049–1054.
  • Rose, M. D., F. Winston, and P. Hieter. 1988. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Sanchirico, M. E., T. D. Fox, and T. L. Mason. 1998. Accumulation of mitochondrially synthesized Saccharomyces cerevisiae Cox2p and Cox3p depends on targeting information in untranslated portions of their mRNAs. EMBO J. 17:5796–5804.
  • Schneider, A., M. Behrens, P. Scherer, E. Pratje, G. Michaelis, and G. Schatz. 1991. Inner membrane protease I, an enzyme mediating intramitochondrial protein sorting in yeast. EMBO J. 10:247–254.
  • Seraphin, B., and S. Kandels-Lewis. 1996. An efficient PCR mutagenesis strategy without gel purification step that is amenable to automation. Nucleic Acids Res. 24:3276–3277.
  • Sevarino, K. A., and R. O. Poyton. 1980. Mitochondrial biogenesis: identification of a precursor to yeast cytochrome c oxidase subunit II, an integral polypeptide. Proc. Natl. Acad. Sci. USA 77:142–146.
  • Shen, Z., and T. D. Fox. 1989. Substitution of an invariant nucleotide at the base of the highly conserved “530-loop” of 15S rRNA causes suppression of mitochondrial ochre mutations. Nucleic Acids Res. 17:4535–4539.
  • Sibler, A. P., G. Dirheimer, and R. P. Martin. 1986. Codon reading patterns in Saccharomyces cerevisiae mitochondria based on sequences of mitochondrial tRNAs. FEBS Lett. 194:131–138.
  • Steele, D. F., C. A. Butler, and T. D. Fox. 1996. Expression of a recoded nuclear gene inserted into yeast mitochondrial DNA is limited by mRNA-specific translational activation. Proc. Natl. Acad. Sci. USA 93:5253–5257.
  • Steffens, G. J., and G. Buse. 1979. Studies on cytochrome c oxidase (IV): primary structure and function of subunit II. Hoppe-Seyler's Z. Physiol. Chem. 360:613–619.
  • Strick, C. A., and T. D. Fox. 1987. Saccharomyces cerevisiae positive regulatory gene PET111 encodes a mitochondrial protein that is translated from an mRNA with a long 5′ leader. Mol. Cell. Biol. 7:2728–2734.
  • Tian, G. L., C. Macadre, A. Kruszewska, B. Szczesniak, A. Ragnini, P. Grisanti, T. Rinaldi, C. Palleschi, L. Frontali, P. P. Slonimski, and J. Lazowska. 1991. Incipient mitochondrial evolution in yeasts. I. The physical map and gene order of Saccharomyces douglasii mitochondrial DNA discloses a translocation of a segment of 15,000 base-pairs and the presence of new introns in comparison with Saccharomyces cerevisiae. J. Mol. Biol. 218:735–746.
  • Torello, A. T., M. H. Overholzer, V. L. Cameron, N. Bonnefoy, and T. D. Fox. 1997. Deletion of the leader peptide of the mitochondrially encoded precursor of Saccharomyces cerevisiae cytochrome c oxidase subunit II. Genetics 145:903–910.
  • Tzagoloff, A., and C. L. Dieckmann. 1990. PET genes of Saccharomyces cerevisiae. Microbiol. Rev. 54:211–225.
  • Velours, J., C. Spannagel, S. Chaignepain, J. Vaillier, G. Arselin, P. V. Graves, G. Velours, and N. Camougrand. 1998. Topography of the yeast ATP synthase F0 sector. Biochimie 80:793–801.
  • Wiesenberger, G., M. C. Costanzo, and T. D. Fox. 1995. Analysis of the Saccharomyces cerevisiae mitochondrial COX3 mRNA 5′-untranslated leader: translational activation and mRNA processing. Mol. Cell. Biol. 15:3291–3300.
  • Wollman, F. A., L. Minai, and R. Nechushtai. 1999. The biogenesis and assembly of photosynthetic proteins in thylakoid membranes. Biochim. Biophys. Acta 1411:21–85.
  • Yaffe, M. P.. 1991. Analysis of mitochondrial function and assembly. Methods Enzymol. 194:627–643.
  • Zuker, M., D. H. Mathews, and D. H. Turner. 1999. Algorithms and thermodynamics for RNA secondary structure prediction: a practical guide. RNA biochemistry and biotechnology.. J. Barciszewski, and B. F. C. Clark. 11–43. Kluwer Academic Publishers, Dordrecht, Holland

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.