20
Views
55
CrossRef citations to date
0
Altmetric
Cell Growth and Development

S338 Phosphorylation of Raf-1 Is Independent of Phosphatidylinositol 3-Kinase and Pak3

, &
Pages 2423-2434 | Received 25 Oct 2000, Accepted 10 Jan 2001, Published online: 27 Mar 2023

REFERENCES

  • Arcaro, A., and M. P. Wymann. 1993. Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem. J. 296:297–301.
  • Bagrodia, S., and R. A. Cerione. 1999. PAK to the future. Trends Cell Biol. 9:350–355.
  • Barnard, D., B. Diaz, D. Clawson, and M. Marshall. 1998. Oncogenes, growth factors and phorbol esters regulate Raf-1 through common mechanisms. Oncogene 17:1539–1547.
  • Bos, J.. 1998. All in the family? New insights and questions regarding interconnectivity of Ras, Rap1 and Ral. EMBO J. 17:6776–6782.
  • Bradford, M. M.. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248–254.
  • Burbelo, P. D., D. Drechsel, and A. Hall. 1995. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270:29071–29074.
  • Chaudhary, A., W. G. King, J. A. Mattaliano, J. A. Frost, B. Diaz, D. K. Morrison, M. H. Cobb, M. S. Marshall, and J. S. Brugge. 2000. Phosphatidylinositol 3-kinase regulates Raf-1 through Pak phosphorylation of serine 338. Curr. Biol. 10:551–554.
  • Cross, D. A., D. R. Alessi, J. R. Vandenheede, H. E. McDowell, H. S. Hundal, and P. Cohen. 1994. The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem. J. 303:21–26.
  • Daniels, R. H., and G. M. Bokoch. 1999. p21-Activated protein kinase: a crucial component of morphological signaling?. Trends Biochem. Sci. 24:350–354.
  • Daum, G., T. I. Eisenmann, H. W. Fries, J. Troppmair, and U. R. Rapp. 1994. The ins and outs of Raf kinases. Trends Biochem. Sci. 19:474–480.
  • Davies, S. P., H. Reddy, M. Caivano, and P. Cohen. 2000. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351:95–105.
  • Davis, R. J.. 1994. MAPKs: new JNK expands the group. Trends Biochem. Sci. 19:470–473.
  • Dent, P., D. B. Reardon, D. K. Morrison, and T. W. Sturgill. 1995. Regulation of Raf-1 and Raf-1 mutants by Ras-dependent and Ras-independent mechanisms in vitro. Mol. Cell. Biol. 15:4125–4135.
  • de Rooij, J., and J. Bos. 1997. Minimal Ras-binding domain of Raf1 can be used as an activation-specific probe for Ras. Oncogene 14:623–625.
  • Diaz, B., D. Barnard, A. Filson, S. MacDonald, A. King, and M. Marshall. 1997. Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signalling. Mol. Cell. Biol. 17:4509–4516.
  • Duckworth, B. C., and L. C. Cantley. 1997. Conditional inhibition of the mitogen-activated protein kinase cascade by wortmannin. J. Biol. Chem. 272:27665–27670.
  • Evan, G. I., G. K. Lewis, G. Ramsay, and J. M. Bishop. 1985. Isolation of monoclonal antibodies specific for human c-myc proto-oncogene product. Mol. Cell. Biol. 5:3610–3616.
  • Fabian, J. R., I. O. Daar, and D. K. Morrison. 1993. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 13:7170–7179.
  • Fabian, J. R., A. B. Vojtek, J. A. Cooper, and D. K. Morrison. 1994. A single amino acid change in Raf-1 inhibits Ras binding and alters Raf-1 function. Proc. Natl. Acad. Sci. USA 91:5982–5986.
  • Farrar, M. A., J. Alberol-lla, and R. M. Perlmutter. 1996. Activation of the Raf-1 kinase cascade by coumermycin-induced dimerization. Nature 383:178–181.
  • Frost, J. A., H. Steen, P. Shapiro, T. Lewis, N. Ahn, P. E. Shaw, and M. H. Cobb. 1997. Cross-cascade activation of Erks and ternary complex factors by Rho family proteins. EMBO J. 16:6426–6438.
  • Guan, K.-L., C. Figueroa, T. R. Brtva, T. Zhu, J. Taylor, T. D. Barber, and A. B. Vojtek. 2000. Negative regulation of the serine/threonine kinase B-Raf by Akt. J. Biol. Chem. 275:27354–27359.
  • Hagemann, C., and U. R. Rapp. 1999. Isotype-specific functions of Raf kinases. Exp. Cell Res. 253:34–46.
  • Hawes, B. E., L. M. Luttrell, T. van Biesen, and R. J. Lefkowitz. 1996. Phosphatidylinositol 3-kinase in an early intermediate in the Gβγ-mediated mitogen-activated protein kinase signaling pathway. J. Biol. Chem. 271:12133–12136.
  • King, A. J., H. Sun, B. Diaz, D. Barnard, W. Miao, S. Bagrodia, and M. S. Marshall. 1998. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine-338. Nature 396:180–184.
  • King, A. J., H. Sun, B. Diaz, D. Barnard, W. Miao, S. Bagrodia, and M. S. Marshall. 2000. The protein kinase Pak3 positively regulates Raf-1 activity through phosphorylation of serine-338. Nature 406:439 (Correction.)
  • King, W. G., M. D. Mattaliano, T. O. Chan, P. N. Tsichlis, and J. S. Brugge. 1997. Phosphatidylinositol 3-kinase is required for integrin-stimulated Akt and Raf-1/mitogen-activated protein kinase pathway activation. Mol. Cell. Biol. 17:4406–4418.
  • Knaus, U. G., and G. M. Bokoch. 1998. The p21Rac/Cdc42-activated kinases (Paks). Int. J. Biochem. Cell Biol. 30:857–862.
  • Laemmli, U. K.. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685.
  • Leevers, S. J., and C. J. Marshall. 1992. Activation of extracellular signal-regulated kinase, ERK2, by p21ras oncoprotein. EMBO J. 11:569–574.
  • Lei, M., W. Lu, W. Meng, M. C. Parrini, M. J. Eck, B. J. Mayer, and S. C. Harrison. 2000. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 102:387–397.
  • Lu, W., S. Katz, R. Gupta, and B. J. Mayer. 1997. Activation of Pak by membrane localization mediated by an SH3 domain from the adaptor protein Nck. Curr. Biol. 7:85–94.
  • Luo, Z., G. Tzivion, P. J. Belshaw, D. Vavvas, M. Marshall, and J. Avruch. 1996. Oligomerization activates c-Raf-1 through a Ras-dependent mechanism. Nature 383:181–185.
  • Manser, E., T. Leung, H. Salihuddin, Z. S. Zhaos, and L. Lim. 1994. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 367:40–46.
  • Marais, R., Y. Light, C. Mason, H. Paterson, M. Olson, and C. J. Marshall. 1998. Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C. Science 280:109–112.
  • Marais, R., Y. Light, H. F. Paterson, and C. J. Marshall. 1995. Ras recruits Raf-1 to the plasma membrane for activation by tyrosine phosphorylation. EMBO J. 14:3136–3145.
  • Marais, R., Y. Light, H. F. Paterson, C. S. Mason, and C. J. Marshall. 1997. Differential regulation of Raf-1, A-Raf and B-Raf by oncogenic Ras and tyrosine kinases. J. Biol. Chem. 272:4378–4383.
  • Marais, R., and C. J. Marshall. 1996. Control of the ERK MAP kinase cascade by Ras and Raf. Cell signalling. P. J. Parker, and T. Pawson. 27:101–125. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
  • Marshall, C. J.. 1995. Specificity of receptor tyrosine kinase signalling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • Mason, C. S., C. Springer, R. G. Cooper, G. Superti-Furga, C. J. Marshall, and R. Marais. 1999. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18:2137–2148.
  • Morrison, D. K., and R. E. J. Cutler. 1997. The complexity of Raf-1 regulation. Curr. Opin. Cell Biol. 9:174–179.
  • Morrison, D. K., G. Heidecker, U. R. Rapp, and T. D. Copeland. 1993. Identification of the major phosphorylation sites of the Raf-1 kinase. J. Biol. Chem. 268:17309–17316.
  • Mott, H. R., J. W. Carpenter, S. Zhong, S. Ghosh, R. M. Bell, and S. L. Campbell. 1996. The solution structure of the Raf-1 cysteine-rich comain: a novel Ras and phospholipid binding site. Proc. Natl. Acad. Sci. USA 93:8312–8317.
  • Robinson, M. J., and M. H. Cobb. 1997. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 9:180–186.
  • Rodriguez-Viciana, P., P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. Fry, M. D. Waterfield, and J. Downward. 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370:527–532.
  • Rommel, C., B. A. Clarke, S. Zimmermann, L. Nunez, R. Rossman, K. Reid, K. Moelling, G. D. Yancopoulos, and D. J. Glass. 1999. Differentiation stage-specific inhibiton of the Raf-MEK-ERK pathway by Akt. Science 286:1738–1741.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Stokoe, D., and F. McCormick. 1997. Activation of c-Raf-1 by Ras and Src through different mechanisms: activation in vivo and in vitro. EMBO J. 16:2384–2396.
  • Sun, H., A. J. King, B. Diaz, and M. S. Marshall. 2000. Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, cdc42/Rac and Pak. Curr. Biol. 10:281–284.
  • Tang, Y., Z. Chen, D. Ambrose, J. Liu, J. B. Gibbs, J. Chernoff, and J. Field. 1997. Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol. Cell. Biol. 17:4454–4464.
  • Tang, Y., S. Marwaha, J. L. Rutkowski, G. I. Tennekoon, P. C. Phillips, and J. Field. 1998. A role for Pak protein kinases in Schwann cell transformation. Proc. Natl. Acad. Sci. USA 95:5139–5144.
  • Taylor, S. J., and D. Shalloway. 1996. Cell cycle-dependent activation of Ras. Curr. Biol. 6:1621–1627.
  • Traverse, S., P. Cohen, H. Paterson, C. J. Marshall, U. Rapp, and R. J. A. Grand. 1993. Specific association of activated MAP kinase kinase kinase (Raf) with the plasma membranes of ras-transformed retinal cells. Oncogene 8:3175–3181.
  • Vlahos, C. J., W. F. Matter, K. Y. Hui, and R. F. Brown. 1994. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J. Biol. Chem. 269:5241–5248.
  • Vojtek, A. B., and C. Der. 1998. Increasing complexity of the Ras signaling pathway. J. Biol. Chem. 273:19925–19928.
  • Wennestrom, S., and J. Downward. 1999. Role of phosphoinositide 3-kinase in activation of Ras and mitogen-activated protein kinase by epidermal growth factor. Mol. Cell. Biol. 19:4279–4288.
  • Yablonski, D., L. P. Kane, D. Qian, and A. Weiss. 1998. A Nck-Pak1 signaling module is required for T-cell receptor-mediated activation of NFAT, but not of JNK. EMBO J. 17:5647–5657.
  • Zimmermann, S., and K. Moelling. 1999. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.