8
Views
32
CrossRef citations to date
0
Altmetric
Gene Expression

Circadian Clock-Specific Roles for the Light Response Protein WHITE COLLAR-2

, &
Pages 2619-2628 | Received 24 Jul 2000, Accepted 22 Jan 2001, Published online: 28 Mar 2023

REFERENCES

  • Allada, R., N. E. White, W. V. So, J. C. Hall, and M. Rosbash. 1998. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 93:791–804.
  • Aronson, B. D., K. A. Johnson, and J. C. Dunlap. 1994. The circadian clock locus frequency: a single ORF defines period length and temperature compensation. Proc. Natl. Acad. Sci. USA 91:7683–7687.
  • Aronson, B. D., K. A. Johnson, J. J. Loros, and J. C. Dunlap. 1994. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263:1578–1584.
  • Aronson, B. D., K. M. Lindgren, J. C. Dunlap, and J. J. Loros. 1994. An efficient method of gene disruption in Neurospora crassa. Mol. Gen. Genet. 242:490–494.
  • Bae, K., C. Lee, D. Sidote, K.-Y. Chuang, and I. Edery. 1998. Circadian regulation of a Drosophila homolog of the mammalian Clock gene: PER and TIM function as positive regulators. Mol. Cell. Biol. 18:6142–6151.
  • Ballario, P., C. Talora, D. Galli, H. Linden, and G. Macino. 1998. Roles in dimerization and blue light photoresponses of PAS and LOV domains of Neurospora crassa white collar proteins. Mol. Microbiol. 29:719–729.
  • Ballario, P., P. Vittorioso, A. Magrelli, C. Talora, A. Cabibbo, and G. Macino. 1996. white collar-1, a central regulator of blue-light responses in Neurospora crassa, is a zinc-finger protein. EMBO J. 15:1650–1657.
  • Bell-Pedersen, D.. 2000. Understanding circadian rhythmicity in Neurospora crassa: from behavior to genes and back again. Fungal Genet. Biol. 29:1–18.
  • Bruchez, J., J. Eberle, and V. Russo. 1993. Regulatory sequences in the transcription of Neurospora crassa genes: CAAT box, TATA box, introns, poly(A) tail formation sequences. Fung. Genet. News 40:89–96.
  • Cheng, P., Y. Yang, C. Heintzen, and Y. Liu. 2001. Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian function in Neurospora. EMBO J. 20:101–108.
  • Corpet, F.. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. 16:10881–10890.
  • Crosthwaite, S. C., J. C. Dunlap, and J. J. Loros. 1997. Neurospora wc-1 and wc-2: Transcription, photoresponses, and the origins of circadian rhythmicity. Science 276:763–769.
  • Crosthwaite, S. C., J. J. Loros, and J. C. Dunlap. 1995. Light-induced resetting of a circadian clock is mediated by a rapid increase in frequency transcript. Cell 81:1003–1012.
  • Darlington, T. K., K. Wager-Smith, M. F. Ceriani, D. Stankis, N. Gekakis, T. Steeves, C. J. Weitz, J. Takahashi, and S. A. Kay. 1998. Closing the circadian loop: CLOCK induced transcription of its own inhibitors, per and tim. Science 280:1599–1603.
  • Davis, R. L., and D. deSerres. 1970. Genetic and microbial research techniques for Neurospora crassa. Methods Enzymol. 27A:79–143.
  • Degli-Innocenti, F., and V. Russo. 1984. Isolation of new white collar mutants of Neurospora crassa and studies on their behavior in the blue light-induced formation of protoperithecia. J. Bacteriol. 159:757–761.
  • Denault, D., J. Loros, and J. Dunlap. 2001. WC-2 mediates WC-1-FRQ interaction within the PAS protein-linked circadian feedback loop of Neurospora. EMBO J. 20:109–117.
  • Dunlap, J.. 1999. Molecular bases for circadian clocks. Cell 96:271–290.
  • Edmunds, L. N. Jr.. 1988. Cellular and molecular bases of biological clocks. Springer-Verlag, New York, N.Y
  • Evans, T., and G. Felsenfield. 1989. The erythroid-specific transcription factor Eryf1: a new finger protein. Cell 58:877–885.
  • Fu, Y.-H., and G. Marzluf. 1990. nit-2, the major positive-acting nitrogen regulatory gene of Neurospora crassa, encodes a sequence-specific DNA-binding protein. Proc. Natl. Acad. Sci. USA 87:5331–5335.
  • Garceau, N., Y. Liu, J. J. Loros, and J. C. Dunlap. 1997. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 89:469–476.
  • Gardner, G. F., and J. F. Feldman. 1981. Temperature compensation of circadian periodicity in clock mutants of Neurospora crassa. Plant Physiol. 68:1244–1248.
  • Gekakis, N., D. Staknis, H. B. Nguyen, F. C. Davis, L. D. Wilsbacher, P. Y. King, J. S. Takahashi, and C. J. Weitz. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569.
  • Gu, Y.-Z., J. B. Hogenesch, and C. A. Bradfield. 2000. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 40:519–561.
  • Hall, J. C.. 1995. Tripping along the trail to the molecular mechanisms of biological clocks. Trends Neurosci. 18:230–240.
  • Hamblen, M. J., N. E. White, P. T. Emery, K. Kaiser, and J. C. Hall. 1998. Molecular and behavioral analysis of four period mutants in Drosophila melanogaster encompassing extreme short, novel long, and unorthodox arrhythmic types. Genetics 149:165–178.
  • Harding, R. W., and R. V. Turner. 1981. Photoregulation of the carotenoid biosynthetic pathways in albino and white collar mutants of Neurospora crassa. Plant Physiol. 68:745–749.
  • Hogenesch, J. B., Y.-Z. Gu, S. Jain, and C. A. Bradfield. 1998. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl. Acad. Sci. USA 95:5474–5479.
  • Ishiura, M., S. Kutsuna, S. Aoki, H. Iwasaki, C. R. Anderson, A. Tanabe, S. S. Golden, C. H. Johnson, and T. Kondo. 1998. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science 281:1519–1523.
  • Iwasaki, H., and J. C. Dunlap. 2000. Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. Curr. Opin. Microbiol. 3:189–196.
  • Jin, X., L. P. Shearman, D. R. Weaver, M. J. Zylka, G. J. de Vries, and S. M. Reppert. 1999. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68.
  • Kawana, M., M. Lee, E. Quertermous, and T. Quertermous. 1995. Cooperative interaction of GATA-2 and AP1 regulates transcription of the endothelin-1 gene. Mol. Cell. Biol. 15:4225–4231.
  • King, D., Y. Zhao, A. Sangoram, L. Wilsbacher, M. Tanaka, M. Antoch, T. Steeves, M. Vitaterna, J. Kornhauser, P. Lowrey, F. Turek, and J. Takahashi. 1997. Positional cloning of the mouse circadian Clock gene. Cell 89:641–653.
  • Kondo, T., N. Tsinoremas, S. Golden, C. H. Johnson, S. Kutsuna, and M. Ishiura. 1994. Circadian clock mutants of cyanobacteria. Science 266:1233–1236.
  • Konopka, R. J., C. Pittendrigh, and D. Orr. 1989. Reciprocal behavior associated with altered homeostasis and photosensitivity of Drosophila clock mutants. J. Neurogenet. 6:1–10.
  • Kudla, B., M. X. Caddick, T. Langdon, N. M. Martinez-Rossi, C. F. Bennett, S. Sibley, R. W. Davies, and H. N. J. Arst. 1990. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J. 9:1355–1364.
  • Lee, C., K. Bae, and I. Edery. 1998. The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation, and interactions with the PER-TIM complex. Neuron 21:857–867.
  • Lee, K., J. Loros, and J. Dunlap. 2000. Interconnected feedback loops in the Neurospora circadian system. Science 289:107–110.
  • Linden, H., P. Ballario, and G. Macino. 1997. Blue light regulation in Neurospora crassa. Fungal Genet. Biol. 22:141–150.
  • Linden, H., and G. Macino. 1997. White collar-2, a partner in blue-light signal transduction, controlling expression of light-regulated genes in Neurospora crassa. EMBO J. 16:98–109.
  • Linden, H., M. Rodriguez-Franco, and G. Macino. 1997. Mutants of Neurospora crassa defective in regulation of blue light perception. Mol. Gen. Genet. 254:111–118.
  • Liu, Y., J. J. Loros, and J. C. Dunlap. 2000. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc. Natl. Acad. Sci. USA 97:234–239.
  • Liu, Y., N. Garceau, J. J. Loros, and J. C. Dunlap. 1997. Thermally regulated translational control mediates aspects of circadian temperature responses in the Neurospora circadian clock. Cell 89:477–486.
  • Liu, Y., M. Merrow, J. J. Loros, and J. C. Dunlap. 1998. How temperature changes reset a circadian oscillator. Science 281:825–829.
  • Loros, J. J.. 1998. Time at the end of the millennium: the Neurospora clock. Curr. Opin. Microbiol. 1:698–706.
  • Loros, J. J., and J. C. Dunlap. 2001. Genetic and molecular analysis of circadian rhythms in Neurospora. Annu. Rev. Physiol. 63:757–794.
  • Loros, J. J., and J. F. Feldman. 1986. Loss of temperature compensation of circadian period length in the frq-9 mutant of Neurospora crassa. J. Biol. Rhythms 1:187–198.
  • Lowry, P. L., K. Shimomura, M. P. Antoch, S. Yamazaki, P. D. Zemenides, M. R. Ralph, M. Menaker, and J. S. Takahashi. 2000. Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 288:483–491.
  • Luo, C., J. J. Loros, and J. C. Dunlap. 1998. Nuclear localization is required for function of the essential clock protein FREQUENCY. EMBO J. 17:1228–1235.
  • Matsumoto, A., K. Tomioka, Y. Chiba, and T. Tanimura. 1999. timrit lengthens circadian period in a temperature-dependent manner through suppression of PERIOD protein cycling and nuclear localization. Mol. Cell. Biol. 19:4343–4354.
  • Merika, M., and S. Orkin. 1995. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins SP1 and EKLF. Mol. Cell. Biol. 15:2437–2447.
  • Omichinski, J., G. Clore, O. Schaad, G. Felsenfeld, C. Trainor, E. Appella, S. Stahl, and A. Gronenborn. 1993. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. Science 261:438–446.
  • Perkins, D. D., A. Radford, D. Newmeyer, and M. Bjorkman. 1982. Chromosomal loci of Neurospora crassa. Microbiol. Rev. 46:426–570.
  • Pittendrigh, C. S.. 1993. Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55:17–54.
  • Ralph, M. R., and M. Menaker. 1988. A mutation of the circadian system in golden hamsters. Science 241:1225–1227.
  • Roenneberg, T., and W. Taylor. 2000. Automated recordings of bioluminescence with special reference to the analysis of circadian rhythms. Methods Enzymol. 305:104–119.
  • Rosbash, M., R. Allada, M. Dembinska, W. Q. Guo, M. Le, S. Marrus, Z. Qian, J. Rutila, J. Yaglom, and H. Zeng. 1996. A Drosophila circadian clock. Cold Spring Harbor Symp. Quant. Biol. 61:265–278.
  • Ruoff, P., M. Vinsjevik, C. Monnerjahn, and L. Rensing. 1999. The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J. Biol. Rhythms 14:469–479.
  • Russo, V.. 1988. Blue light induces circadian rhythms in the bd mutant of Neurospora: double mutants bd, wc-1 and bd, wc-2 are blind. J. Photochem. Photobiol. B 2:59–65.
  • Rutila, J. E., V. Suri, M. Le, W. V. So, M. Rosbash, and J. C. Hall. 1998. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93:805–813.
  • Sambrook, H., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y
  • Starich, M., M. Wikstrom, S. Schumacher, H. Arst Jr., A. Gronenborn, and G. Clore. 1998. The solution structure of the Leu22>Val mutant AREA DNA binding domain complexed with a TGATAG core element defines a role for hydrophobic packing in the determination of specificity. J. Mol. Biol. 277:621–634.
  • Talora, C., L. Franchii, H. Linden, P. Ballario, and G. Macino. 1999. Role of a white collar-1-white collar-2 complex in blue-light signal transduction. EMBO J. 18:4961–4968.
  • Teakle, G., and P. Gilmartin. 1998. Two forms of type IV zinc-finger motif and their kingdom-specifc distribution between the flora, fauna and fungi. Trends Biochem. 23 3 100–102.
  • Tosini, G., and M. Menaker. 1998. The tau mutation affects temperature compensation of hamster retinal circadiina oscillators. NeuroReport 9:1101–1105.
  • Tsai, S.-F., D. Martin, L. Zon, A. D'Andrea, G. Wong, and S. Orkin. 1989. Cloning of cDNA for the major DNA-binding protein of the erythroid lineage through expression in mammalian cells. Nature 339:446–451.
  • Vitaterna, K. W., P. Y. King, A. M. Chang, J. M. Kornhauser, P. L. Lowrey, J. D. McDonald, W. F. Dove, L. H. Pinto, F. W. Turek, and J. S. Takahashi. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725.
  • Young, M. W.. 1998. The molecular control of circadian behavioral rhythms and their entrainment in Drosophila. Annu. Rev. Biochem. 67:135–152.
  • Zatz, M.. 1992. Circadian rhythms 8, Elsevier, Amsterdam, The Netherlands

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.