51
Views
47
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

A Step Subsequent to Preinitiation Complex Assembly at the Ribosomal RNA Gene Promoter Is Rate Limiting for Human RNA Polymerase I-Dependent Transcription

, &
Pages 2641-2649 | Received 20 Dec 2000, Accepted 22 Jan 2001, Published online: 28 Mar 2023

REFERENCES

  • Albert, A.-C., M. Denton, M. Kermekchiev, and C. S. Pikaard. 1999. Histone acetyltransferase and protein kinase activities copurify with a putative Xenopus RNA polymerase I holoenzyme self-sufficient for promoter-dependent transcription. Mol. Cell. Biol. 19:796–806.
  • Arias, J. A., and W. S. Dynan. 1989. Promoter-dependent transcription by RNA polymerase II using immobilized enzyme complexes. J. Biol. Chem. 264:3223–3229.
  • Beckmann, H., J. L. Chen, T. O'Brien, and R. Tjian. 1995. Coactivator and promoter-selective properties of RNA polymerase I TAFs. Science 270:1506–1509.
  • Bell, S. P., H. M. Jantzen, and R. Tjian. 1990. Assembly of alternative multiprotein complexes directs rRNA promoter selectivity. Genes Dev. 4:943–954.
  • Bell, S. P., R. M. Learned, H. M. Jantzen, and R. Tjian. 1988. Functional cooperativity between transcription factors UBF1 and SL1 mediates human ribosomal RNA synthesis. Science 241:1192–1197.
  • Cavanaugh, A. H., and E. A. Thompson Jr.. 1985. Hormonal regulation of transcription of rDNA: glucocorticoid effects upon initiation and elongation in vitro. Nucleic Acids Res. 13:3357–3369.
  • Cizewski, V., and B. Sollner-Webb. 1983. A stable transcription complex directs mouse ribosomal RNA synthesis by RNA polymerase I. Nucleic Acids Res. 11:7043–7056.
  • Comai, L., N. Tanese, and R. Tjian. 1992. The TATA-binding protein and associated factors are integral components of the RNA polymerase I transcription factor, SL1. Cell 68:965–976.
  • Comai, L., J. C. Zomerdijk, H. Beckmann, S. Zhou, A. Admon, and R. Tjian. 1994. Reconstitution of transcription factor SL1: exclusive binding of TBP by SL1 or TFIID subunits. Science 266:1966–1972.
  • Copenhaver, G. P., C. D. Putnam, M. L. Denton, and C. S. Pikaard. 1994. The RNA polymerase I transcription factor UBF is a sequence-tolerant HMG-box protein that can recognize structured nucleic acids. Nucleic Acids Res. 22:2651–2657.
  • Derenzini, M., D. Trere, A. Pession, L. Montanaro, V. Sirri, and R. L. Ochs. 1998. Nucleolar function and size in cancer cells. Am. J. Pathol. 152:1291–1297.
  • Dignam, J. D., P. L. Martin, B. S. Shastry, and R. G. Roeder. 1983. Eukaryotic gene transcription with purified components. Methods Enzymol. 101:582–598.
  • Grummt, I.. 1999. Regulation of mammalian ribosomal gene transcription by RNA polymerase I. Prog. Nucleic Acid Res. Mol. Biol. 62:109–154.
  • Hadjiolov, A. A.. 1985. The nucleolus and ribosome biogenesis. Cell Biol. Monogr. 12:1–290.
  • Haglund, R. E., and L. I. Rothblum. 1987. Isolation, fractionation and reconstitution of a nuclear extract capable of transcribing ribosomal DNA. Mol. Cell. Biochem. 73:11–20.
  • Haltiner, M. M., S. T. Smale, and R. Tjian. 1986. Two distinct promoter elements in the human rRNA gene identified by linker scanning mutagenesis. Mol. Cell. Biol. 6:227–235.
  • Haltiner-Jones, M., R. M. Learned, and R. Tjian. 1988. Analysis of clustered point mutations in the human ribosomal RNA gene promoter by transient expression in vivo. Proc. Natl. Acad. Sci. USA 85:669–673.
  • Hannan, K. M., R. D. Hannan, and L. I. Rothblum. 1998. Transcription by RNA polymerase I. Front. Biosci. 3:d376–d398 [Online.] http://www.bioscience.org/1998/v3/d/hannan/list.htm
  • Hannan, R. D., A. Cavanaugh, W. M. Hempel, T. Moss, and L. Rothblum. 1999. Identification of a mammalian RNA polymerase I holoenzyme containing components of the DNA repair/replication system. Nucleic Acids Res. 27:3720–3727.
  • Henderson, S. L., K. Ryan, and B. Sollner-Webb. 1989. The promoter-proximal rDNA terminator augments initiation by preventing disruption of the stable transcription complex caused by polymerase read-in. Genes Dev. 3:212–223.
  • Hisatake, K., T. Nishimura, Y. Maeda, K. Hanada, C. Z. Song, and M. Muramatsu. 1991. Cloning and structural analysis of cDNA and the gene for mouse transcription factor UBF. Nucleic Acids Res. 19:4631–4637.
  • Hu, C. H., B. McStay, S. W. Jeong, and R. H. Reeder. 1994. xUBF, an RNA polymerase I transcription factor, binds crossover DNA with low sequence specificity. Mol. Cell. Biol. 14:2871–2882.
  • Jacob, S. T., and A. K. Ghosh. 1999. Control of RNA polymerase I-directed transcription: recent trends. J. Cell. Biochem. 32–33(Suppl.):41–50.
  • Jantzen, H. M., A. Admon, S. P. Bell, and R. Tjian. 1990. Nucleolar transcription factor hUBF contains a DNA-binding motif with homology to HMG proteins. Nature 344:830–836.
  • Jordan, P., M. Mannervik, L. Tora, and M. Carmo Fonseca. 1996. In vivo evidence that TATA-binding protein/SL1 colocalizes with UBF and RNA polymerase I when rRNA synthesis is either active or inactive. J. Cell Biol. 133:225–234.
  • Kasher, M. S., D. Pintel, and D. C. Ward. 1986. Rapid enrichment of HeLa transcription factors IIIB and IIIC by using affinity chromatography based on avidin-biotin interactions. Mol. Cell. Biol. 6:3117–3127.
  • Kato, H., M. Nagamine, R. Kominami, and M. Muramatsu. 1986. Formation of the transcription initiation complex on mammalian rDNA. Mol. Cell. Biol. 6:3418–3427.
  • Kingston, R. E., and M. R. Green. 1994. Modeling eukaryotic transcriptional activation. Curr. Biol. 4:325–332.
  • Kugel, J. F., and J. A. Goodrich. 1998. Promoter escape limits the rate of RNA polymerase II transcription and is enhanced by TFIIE, TFIIH, and ATP on negatively supercoiled DNA. Proc. Natl. Acad. Sci. USA 95:9232–9237.
  • Kuhn, A., R. Voit, V. Stefanovsky, R. Evers, M. Bianchi, and I. Grummt. 1994. Functional differences between the two splice variants of the nucleolar transcription factor UBF: the second HMG box determines specificity of DNA binding and transcriptional activity. EMBO J. 13:416–424.
  • Langst, G., T. A. Blank, P. B. Becker, and I. Grummt. 1997. RNA polymerase I transcription on nucleosomal templates: the transcription termination factor TTF-I induces chromatin remodeling and relieves transcriptional repression. EMBO J. 16:760–768.
  • Learned, R. M., S. Cordes, and R. Tjian. 1985. Purification and characterization of a transcription factor that confers promoter specificity to human RNA polymerase I. Mol. Cell. Biol. 5:1358–1369.
  • Learned, R. M., T. K. Learned, M. M. Haltiner, and R. T. Tjian. 1986. Human rRNA transcription is modulated by the coordinate binding of two factors to an upstream control element. Cell 45:847–857.
  • Lin, Y. S., and M. R. Green. 1991. Mechanism of action of an acidic transcriptional activator in vitro. Cell 64:971–981.
  • McStay, B., C. H. Hu, C. S. Pikaard, and R. H. Reeder. 1991. xUBF and Rib 1 are both required for formation of a stable polymerase I promoter complex in X. laevis. EMBO J. 10:2297–2303.
  • Miller, G., K. I. Panov, J. K. Friedrich, L. Trinkle-Mulcahy, A. I. Lamond, and J. C. B. M. Zomerdijk. hRRN3 is essential in the SL1-mediated recruitment of RNA polymerase I to rRNA gene promoters. EMBO J., in press.
  • O'Mahony, D. J., S. D. Smith, W. Xie, and L. I. Rothblum. 1992. Analysis of the phosphorylation, DNA-binding and dimerization properties of the RNA polymerase I transcription factors UBF1 and UBF2. Nucleic Acids Res. 20:1301–1308.
  • Paule, M. R.. 1998. Transcription of ribosomal RNA genes by eukaryotic RNA polymerase I. Springer-Verlag, Berlin, Germany
  • Putnam, C. D., G. P. Copenhaver, M. L. Denton, and C. S. Pikaard. 1994. The RNA polymerase I transactivator upstream binding factor requires its dimerization domain and high-mobility-group (HMG) box 1 to bend, wrap, and positively supercoil enhancer DNA. Mol. Cell. Biol. 14:6476–6488.
  • Ranish, J. A., N. Yudkovsky, and S. Hahn. 1999. Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev. 13:49–63.
  • Reeder, R. H.. 1999. Regulation of RNA polymerase I transcription in yeast and vertebrates. Prog. Nucleic Acid Res. Mol. Biol. 62:293–327.
  • Reeder, R. H., C. S. Pikaard, and B. McStay. 1995. UBF, an architectural element for RNA polymerase I promoters. Nucleic Acids Mol. Biol. 9:251–263.
  • Roussel, P., C. Andre, L. Comai, and D. Hernandez Verdun. 1996. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 133:235–246.
  • SaezVasquez, J., and C. S. Pikaard. 1997. Extensive purification of a putative RNA polymerase I holoenzyme from plants that accurately initiates rRNA gene transcription in vitro. Proc. Natl. Acad. Sci. USA 94:11869–11874.
  • Schnapp, A., and I. Grummt. 1991. Transcription complex formation at the mouse rDNA promoter involves the stepwise association of four transcription factors and RNA polymerase I. J. Biol. Chem. 266:24588–24595.
  • Schnapp, G., F. Santori, C. Carles, M. Riva, and I. Grummt. 1994. The HMG box-containing nucleolar transcription factor UBF interacts with a specific subunit of RNA polymerase I. EMBO J. 13:190–199.
  • Seither, P., S. Iben, and I. Grummt. 1998. Mammalian RNA polymerase I exists as a holoenzyme with associated basal transcription factors. J. Mol. Biol. 275:43–53.
  • Wandelt, C., and I. Grummt. 1983. Formation of stable preinitiation complexes is a prerequisite for ribosomal DNA transcription in vitro. Nucleic Acids Res. 11:3795–3809.
  • Zomerdijk, J. C. B. M., H. Beckmann, L. Comai, and R. Tjian. 1994. Assembly of transcriptionally active RNA polymerase I initiation factor SL1 from recombinant subunits. Science 266:2015–2018.
  • Zomerdijk, J. C. B. M., and R. Tjian. 1998. Structure and assembly of human selectivity factor SL1. Transcription of eukaryotic ribosomal RNA genes by RNA polymerase I.. M. R. Paule. 67–73. Springer-Verlag, Berlin, Germany

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.