25
Views
76
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Thrombopoietin-Mediated Sustained Activation of Extracellular Signal-Regulated Kinase in UT7-Mpl Cells Requires Both Ras–Raf-1- and Rap1–B-Raf-Dependent Pathways

, , , &
Pages 2659-2670 | Received 02 Nov 2000, Accepted 24 Jan 2001, Published online: 28 Mar 2023

REFERENCES

  • Adachi, M., R. Ryo, A. Yoshida, W. Sugano, M. Yasunaga, K. Saigo, N. Yamaguchi, T. Sato, K. Sano, K. Kaibuchi, and Y. Takai. 1992. Induction of smg p21/rap1A p21/krev-1 p21 gene expression during phorbol ester-induced differentiation of a human megakaryocytic leukemia cell line. Oncogene 7:323–329.
  • Altschuler, D. L., S. N. Peterson, M. C. Ostrowski, and E. G. Lapetina. 1995. Cyclic AMP-dependent activation of Rap1b. J. Biol. Chem. 270:10373–10376.
  • Altschuler, D. L., and F. Ribeiro-Neto. 1998. Mitogenic and oncogenic properties of the small G protein Rap1b. Proc. Natl. Acad. Sci. USA 95:7475–7479.
  • Barberis, L., K. K. Wary, G. Fiucci, F. Liu, M. Brancaccio, F. Altruda, G. Tarone, and F. G. Giancotti. 2000. Distinct roles of the adaptor protein Shc and focal adhesion kinase in integrin signaling to ERK. J. Biol. Chem. 275:36532–36540.
  • Beranger, F., B. Goud, A. Tavitian, and J. de Gunzburg. 1991. Association of the Ras-antagonistic Rap1/Krev-1 proteins with the Golgi complex. Proc. Natl. Acad. Sci. USA 88:1606–1610.
  • Berger, G., R. Quarck, D. Tenza, S. Levy-Toledano, J. de Gunzburg, and E. M. Cramer. 1994. Ultrastructural localization of the small GTP-binding protein Rap1 in human platelets and megakaryocytes. Br. J. Haematol. 88:372–382.
  • Boussiotis, V. A., G. J. Freeman, A. Berezovskaya, D. L. Barber, and L. M. Nadler. 1997. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278:124–128.
  • Burgering, B. M., A. M. de Vries-Smits, R. H. Medema, P. C. van Weeren, L. G. Tertoolen, and J. L. Bos. 1993. Epidermal growth factor induces phosphorylation of extracellular signal-regulated kinase 2 via multiple pathways. Mol. Cell. Biol. 13:7248–7256.
  • Busca, R., P. Abbe, F. Mantoux, E. Aberdam, C. Peyssonnaux, A. Eychene, J. P. Ortonne, and R. Ballotti. 2000. Ras mediates the cAMP-dependent activation of extracellular signal-regulated kinases (ERKs) in melanocytes. EMBO J. 19:2900–2910.
  • Cook, S. J., B. Rubinfeld, I. Albert, and F. McCormick. 1993. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12:3475–3485.
  • Cwirla, S. E., P. Balasubramanian, D. J. Duffin, C. R. Wagstrom, C. M. Gates, S. C. Singer, A. M. Davis, R. L. Tansik, L. C. Mattheakis, C. M. Boytos, P. J. Schatz, D. P. Baccanari, N. C. Wrighton, R. W. Barrett, and W. J. Dower. 1997. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 276:1696–1699.
  • Dugan, L. L., J. S. Kim, Y. Zhang, R. D. Bart, Y. Sun, D. M. Holtzman, and D. H. Gutmann. 1999. Differential effects of cAMP in neurons and astrocytes. Role of B-raf. J. Biol. Chem. 274:25842–25848.
  • Eychene, A., I. Dusanter-Fourt, J. V. Barnier, C. Papin, M. Charon, S. Gisselbrecht, and G. Calothy. 1995. Expression and activation of B-Raf kinase isoforms in human and murine leukemia cell lines. Oncogene 10:1159–1165.
  • Fichelson, S., J. M. Freyssinier, F. Picard, M. Fontenay-Roupie, M. Guesnu, M. Cherai, S. Gisselbrecht, and F. Porteu. 1999. Megakaryocyte growth and development factor-induced proliferation and differentiation are regulated by the mitogen-activated protein kinase pathway in primitive cord blood hematopoietic progenitors. Blood 94:1601–1613.
  • Franke, B., J. W. Akkerman, and J. L. Bos. 1997. Rapid Ca2+-mediated activation of Rap1 in human platelets. EMBO J. 16:252–259.
  • Franke, B., M. van Triest, K. M. de Bruijn, G. van Willigen, H. K. Nieuwenhuis, C. Negrier, J. W. Akkerman, and J. L. Bos. 2000. Sequential regulation of the small GTPase Rap1 in human platelets. Mol. Cell. Biol. 20:779–785.
  • Frost, J. A., H. Steen, P. Shapiro, T. Lewis, N. Ahn, P. E. Shaw, and M. H. Cobb. 1997. Cross-cascade activation of ERKs and ternary complex factors by Rho family proteins. EMBO J. 16:6426–6438.
  • Guan, K. L., C. Figueroa, T. R. Brtva, T. Zhu, J. Taylor, T. D. Barber, and A. B. Vojtek. 2000. Negative regulation of the serine/threonine kinase B-Raf by Akt. J. Biol. Chem. 275:27354–27359.
  • Hagemann, C., and U. R. Rapp. 1999. Isotype-specific functions of Raf kinases. Exp. Cell Res. 253:34–46.
  • Herrmann, C., G. Horn, M. Spaargaren, and A. Wittinghofer. 1996. Differential interaction of the ras family GTP-binding proteins H-Ras, Rap1A, and R-Ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271:6794–6800.
  • Hu, C. D., K. Kariya, G. Kotani, M. Shirouzu, S. Yokoyama, and T. Kataoka. 1997. Coassociation of Rap1A and Ha-Ras with Raf-1 N-terminal region interferes with ras-dependent activation of Raf-1. J. Biol. Chem. 272:11702–11705.
  • Jaiswal, R. K., S. A. Moodie, A. Wolfman, and G. E. Landreth. 1994. The mitogen-activated protein kinase cascade is activated by B-Raf in response to nerve growth factor through interaction with p21ras. Mol. Cell. Biol. 14:6944–6953.
  • Jaiswal, R. K., E. Weissinger, W. Kolch, and G. E. Landreth. 1996. Nerve growth factor-mediated activation of the mitogen-activated protein (MAP) kinase cascade involves a signaling complex containing B-Raf and HSP90. J. Biol. Chem. 271:23626–23629.
  • Jordan, J. D., K. D. Carey, P. J. Stork, and R. Iyengar. 1999. Modulation of rap activity by direct interaction of Galpha(o) with Rap1 GTPase-activating protein. J. Biol. Chem. 274:21507–21510.
  • Kaushansky, K.. 1995. Thrombopoietin: the primary regulator of megakaryocyte and platelet production. Thromb. Haemostasis 74:521–525.
  • Kitayama, H., Y. Sugimoto, T. Matsuzaki, Y. Ikawa, and M. Noda. 1989. A ras-related gene with transformation suppressor activity. Cell 56:77–84.
  • Kolch, W., G. Heidecker, G. Kochs, R. Hummel, H. Vahidi, H. Mischak, G. Finkenzeller, D. Marme, and U. R. Rapp. 1993. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 364:249–252.
  • Kuroda, S., T. Ohtsuka, B. Yamamori, K. Fukui, K. Shimizu, and Y. Takai. 1996. Different effects of various phospholipids on Ki-Ras-, Ha-Ras-, and Rap1B-induced B-Raf activation. J. Biol. Chem. 271:14680–14683.
  • Marais, R., Y. Light, H. F. Paterson, C. S. Mason, and C. J. Marshall. 1997. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J. Biol. Chem. 272:4378–4383.
  • Maridonneau-Parini, I., and J. de Gunzburg. 1992. Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J. Biol. Chem. 267:6396–6402.
  • Marshall, C. J.. 1995. Specificity of receptor tyrosine kinase signaling: transient versus sustained extracellular signal-regulated kinase activation. Cell 80:179–185.
  • Mason, C. S., C. J. Springer, R. G. Cooper, G. Superti-Furga, C. J. Marshall, and R. Marais. 1999. Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J. 18:2137–2148.
  • Matsubara, K., S. Kishida, Y. Matsuura, H. Kitayama, M. Noda, and A. Kikuchi. 1999. Plasma membrane recruitment of RalGDS is critical for Ras-dependent Ral activation. Oncogene 18:1303–1312.
  • Matsumura, I., K. Nakajima, H. Wakao, S. Hattori, K. Hashimoto, H. Sugahara, T. Kato, H. Miyazaki, T. Hirano, and Y. Kanakura. 1998. Involvement of prolonged ras activation in thrombopoietin-induced megakaryocytic differentiation of a human factor-dependent hematopoietic cell line. Mol. Cell. Biol. 18:4282–4290.
  • Melemed, A. S., J. W. Ryder, and T. A. Vik. 1997. Activation of the mitogen-activated protein kinase pathway is involved in and sufficient for megakaryocytic differentiation of CMK cells. Blood 90:3462–3470.
  • Morice, C., F. Nothias, S. Konig, P. Vernier, M. Baccarini, J. D. Vincent, and J. V. Barnier. 1999. Raf-1 and B-Raf proteins have similar regional distributions but differential subcellular localization in adult rat brain. Eur. J. Neurosci. 11:1995–2006.
  • Morita, H., T. Tahara, A. Matsumoto, T. Kato, H. Miyazaki, and H. Ohashi. 1996. Functional analysis of the cytoplasmic domain of the human Mpl receptor for tyrosine-phosphorylation of the signaling molecules, proliferation and differentiation. FEBS Lett. 395:228–234.
  • Nagata, K., and Y. Nozawa. 1995. A low M(r) GTP-binding protein, Rap1, in human platelets: localization, translocation and phosphorylation by cyclic AMP-dependent protein kinase. Br. J. Haematol. 90:180–186.
  • Oda, A., Y. Miyakawa, B. J. Druker, A. Ishida, K. Ozaki, H. Ohashi, M. Wakui, M. Handa, K. Watanabe, S. Okamoto, and Y. Ikeda. 1996. Crkl is constitutively tyrosine phosphorylated in platelets from chronic myelogenous leukemia patients and inducibly phosphorylated in normal platelets stimulated by thrombopoietin. Blood 88:4304–4313.
  • Ohmori, T., A. Kikuchi, K. Yamamoto, S. Kim, and Y. Takai. 1989. Small molecular weight GTP-binding proteins in human platelet membranes. Purification and characterization of a novel GTP-binding protein with a molecular weight of 22,000. J. Biol. Chem. 264:1877–1881.
  • Ohtsuka, T., K. Shimizu, B. Yamamori, S. Kuroda, and Y. Takai. 1996. Activation of brain B-Raf protein kinase by Rap1B small GTP-binding protein. J. Biol. Chem. 271:1258–1261.
  • Okada, S., M. Matsuda, M. Anafi, T. Pawson, and J. E. Pessin. 1998. Insulin regulates the dynamic balance between Ras and Rap1 signaling by coordinating the assembly states of the Grb2-SOS and CrkII-C3G complexes. EMBO J. 17:2554–2565.
  • Okada, T., C. D. Hu, T. G. Jin, K. Kariya, Y. Yamawaki-Kataoka, and T. Kataoka. 1999. The strength of interaction at the Raf cysteine-rich domain is a critical determinant of response of Raf to Ras family small GTPases. Mol. Cell. Biol. 19:6057–6064.
  • Papin, C., A. Denouel, G. Calothy, and A. Eychene. 1996. Identification of signalling proteins interacting with B-Raf in the yeast two-hybrid system. Oncogene 12:2213–2221.
  • Papin, C., A. Denouel-Galy, D. Laugier, G. Calothy, and A. Eychene. 1998. Modulation of kinase activity and oncogenic properties by alternative splicing reveals a novel regulatory mechanism for B-Raf. J. Biol. Chem. 273:24939–24947.
  • Pizon, V., P. Chardin, I. Lerosey, B. Olofsson, and A. Tavitian. 1988. Human cDNAs rap1 and rap2 homologous to the Drosophila gene Dras3 encode proteins closely related to ras in the ‘effector’ region. Oncogene 3:201–204.
  • Pizon, V., M. Desjardins, C. Bucci, R. G. Parton, and M. Zerial. 1994. Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J. Cell Sci. 107:1661–1670.
  • Porteu, F., M. C. Rouyez, L. Cocault, L. Benit, M. Charon, F. Picard, S. Gisselbrecht, M. Souyri, and I. Dusanter-Fourt. 1996. Functional regions of the mouse thrombopoietin receptor cytoplasmic domain: evidence for a critical region which is involved in differentiation and can be complemented by erythropoietin. Mol. Cell. Biol. 16:2473–2482.
  • Posern, G., C. K. Weber, U. R. Rapp, and S. M. Feller. 1998. Activity of Rap1 is regulated by bombesin, cell adhesion, and cell density in NIH3T3 fibroblasts. J. Biol. Chem. 273:24297–24300.
  • Reuther, G. W., and C. J. Der. 2000. The Ras branch of small GTPases: Ras family members don't fall far from the tree. Curr. Opin. Cell Biol. 12:157–165.
  • Rodriguez-Viciana, P., P. H. Warne, B. Vanhaesebroeck, M. D. Waterfield, and J. Downward. 1996. Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J. 15:2442–2451.
  • Rojnuckarin, P., J. G. Drachman, and K. Kaushansky. 1999. Thrombopoietin-induced activation of the mitogen-activated protein kinase (MAPK) pathway in normal megakaryocytes: role in endomitosis. Blood 94:1273–1282.
  • Rouyez, C. M., C. Boucheron, S. Gisselbrecht, I. Dusanter-Fourt, and F. Porteu. 1997. Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway. Mol. Cell. Biol. 17:4991–5000.
  • Schaeffer, H. J., and M. J. Weber. 1999. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19:2435–2444.
  • Schmitt, J. M., and P. J. Stork. 2000. Beta 2-adrenergic receptor activates extracellular signal-regulated kinases (ERKs) via the small G protein rap1 and the serine/threonine kinase B-Raf. J. Biol. Chem. 275:25342–25350.
  • Seidel, G. M., M. Klinger, M. Freissmuth, and C. Holler. 1999. Activation of mitogen-activated protein kinase by the A(2A)-adenosine receptor via a rap1-dependent and via a p21(ras)-dependent pathway. J. Biol. Chem. 274:25833–25841.
  • Stokoe, D., S. G. Macdonald, K. Cadwallader, M. Symons, and J. F. Hancock. 1994. Activation of Raf as a result of recruitment to the plasma membrane. Science 264:1463–1467.
  • Sun, H., A. J. King, H. B. Diaz, and M. S. Marshall. 2000. Regulation of the protein kinase Raf-1 by oncogenic Ras through phosphatidylinositol 3-kinase, Cdc42/Rac and Pak. Curr. Biol. 10:281–284.
  • Torti, M., G. Ramaschi, F. Sinigaglia, E. G. Lapetina, and C. Balduini. 1994. Glycoprotein IIb-IIIa and the translocation of Rap2B to the platelet cytoskeleton. Proc. Natl. Acad. Sci. USA 91:4239–4243.
  • Treisman, R.. 1996. Regulation of transcription by MAP kinase cascades. Curr. Opin. Cell Biol. 8:205–215.
  • Tsukamoto, N., M. Hattori, H. Yang, J. L. Bos, and N. Minato. 1999. Rap1 GTPase-activating protein SPA-1 negatively regulates cell adhesion. J. Biol. Chem. 274:18463–18469.
  • van den Berghe, N., R. H. Cool, G. Horn, and A. Wittinghofer. 1997. Biochemical characterization of C3G: an exchange factor that discriminates between Rap1 and Rap2 and is not inhibited by Rap1A(S17N). Oncogene 15:845–850.
  • Vossler, R. M., H. Yao, R. D. York, M. G. Pan, C. S. Rim, and P. J. Stork. 1997. cAMP activates MAP kinase and Elk-1 through a B-Raf- and Rap1-dependent pathway. Cell 89:73–82.
  • Wan, Y., and X. Y. Huang. 1998. Analysis of the Gs/mitogen-activated protein kinase pathway in mutant S49 cells. J. Biol. Chem. 273:14533–14537.
  • Whalen, A. M., S. C. Galasinski, P. S. Shapiro, T. S. Nahreini, and N. G. Ahn. 1997. Megakaryocytic differentiation induced by constitutive activation of mitogen-activated protein kinase kinase. Mol. Cell. Biol. 17:1947–1958.
  • Wojnowski, L., L. F. Stancato, A. C. Larner, U. R. Rapp, and A. Zimmer. 2000. Overlapping and specific functions of Braf and Craf-1 proto-oncogenes during mouse embryogenesis. Mech. Dev. 91:97–104.
  • Wolthuis, R. M., B. Franke, M. van Triest, B. Bauer, R. H. Cool, J. H. Camonis, J. W. Akkerman, and J. L. Bos. 1998. Activation of the small GTPase Ral in platelets. Mol. Cell. Biol. 18:2486–2491.
  • York, R. D., D. C. Molliver, S. S. Grewal, P. E. Stenberg, E. W. McCleskey, and P. J. Stork. 2000. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol. Cell. Biol. 20:8069–8083.
  • York, R. D., H. Yao, T. Dillon, C. L. Ellig, S. P. Eckert, E. W. McCleskey, and P. J. Stork. 1998. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392:622–626.
  • Zimmermann, S., and K. Moelling. 1999. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286:1741–1744.
  • Zutter, M. M., A. D. Painter, and X. Yang. 1999. The megakaryocyte/platelet-specific enhancer of the alpha2beta1 integrin gene: two tandem AP1 sites and the mitogen-activated protein kinase signaling cascade. Blood 93:1600–1611.
  • Zwartkruis, F. J., and J. L. Bos. 1999. Ras and Rap1: two highly related small GTPases with distinct function. Exp. Cell Res. 253:157–165.
  • Zwartkruis, F. J., R. M. Wolthuis, N. M. Nabben, B. Franke, and J. L. Bos. 1998. Extracellular signal-regulated activation of Rap1 fails to interfere in Ras effector signalling. EMBO J. 17:5905–5912.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.