62
Views
157
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Dual Roles of Cripto as a Ligand and Coreceptor in the Nodal Signaling Pathway

, , , , , & show all
Pages 4439-4449 | Received 28 Nov 2001, Accepted 09 Apr 2002, Published online: 27 Mar 2023

REFERENCES

  • Adachi, H., Y. Saijoh, K. Mochida, S. Ohishi, H. Hashiguchi, A. Hirao, and H. Hamada. 1999. Determination of left/right asymmetric expression of nodal by a left side-specific enhancer with sequence similarity to a lefty-2 enhancer. Genes Dev. 13: 1589–1600.
  • Attisano, L., J. L. Wrana, E. Montalvo, and J. Massague. 1996. Activation of signalling by the activin receptor complex. Mol. Cell. Biol. 16: 1066–1073.
  • Bamford, R. N., E. Roessler, R. D. Burdine, U. Saplakoglu, J. dela Cruz, M. Splitt, J. Towbin, P. Bowers, B. Marino, A. F. Schier, M. M. Shen, M. Muenke, and B. Casey. 2000. Loss-of-function mutations in the EGF-CFC gene CFC1 are associated with human left-right laterality defects. Nat. Genet. 26: 365–369.
  • Bianco, C., S. Kannan, M. De Santis, M. Seno, C. K. Tang, I. Martinez-Lacaci, N. Kim, B. Wallace-Jones, M. E. Lippman, A. D. Ebert, C. Wechselberger, and D. S. Salomon. 1999. Cripto-1 indirectly stimulates the tyrosine phosphorylation of erbB-4 through a novel receptor. J. Biol. Chem. 274: 8624–8629.
  • Brandt, R., N. Normanno, W. J. Gullick, J. H. Lin, R. Harkins, D. Schneider, B. W. Jones, F. Ciardiello, M. G. Persico, F. Armenante, N. Kim, and D. S. Salomon. 1994. Identification and biological characterization of an epidermal growth factor-related protein: cripto-1. J. Biol. Chem. 269: 17320–17328.
  • Brennan, J., C. C. Lu, D. P. Norris, T. A. Rodriguez, R. S. Beddington, and E. J. Robertson. 2001. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411: 965–969.
  • Bruckner, K., L. Perez, H. Clausen, and S. Cohen. 2000. Glycosyltransferase activity of Fringe modulates Notch-Delta interactions. Nature 406: 411–415.
  • Carcamo, J., F. M. Weis, F. Ventura, R. Wieser, J. L. Wrana, L. Attisano, and J. Massague. 1994. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor beta and activin. Mol. Cell. Biol. 14: 3810–3821.
  • Carcamo, J., A. Zentella, and J. Massague. 1995. Disruption of transforming growth factor beta signaling by a mutation that prevents transphosphorylation within the receptor complex. Mol. Cell. Biol. 15: 1573–1581.
  • Chen, X., M. J. Rubock, and M. Whitman. 1996. A transcriptional partner for MAD proteins in TGF-beta signalling. Nature 383: 691–696.
  • Chen, X., E. Weisberg, V. Fridmacher, M. Watanabe, G. Naco, and M. Whitman. 1997. Smad4 and FAST-1 in the assembly of activin-responsive factor. Nature 389: 85–89.
  • Chen, Y., and A. F. Schier. 2001. The zebrafish Nodal signal Squint functions as a morphogen. Nature 411: 607–610.
  • Ciardiello, F., R. Dono, N. Kim, M. G. Persico, and D. S. Salomon. 1991. Expression of cripto, a novel gene of the epidermal growth factor gene family, leads to in vitro transformation of a normal mouse mammary epithelial cell line. Cancer Res. 51: 1051–1054.
  • Ciardiello, F., N. Kim, T. Saeki, R. Dono, M. G. Persico, G. D. Plowman, J. Garrigues, S. Radke, G. J. Todaro, and D. S. Salomon. 1991. Differential expression of epidermal growth factor-related proteins in human colorectal tumors. Proc. Natl. Acad. Sci. USA 88: 7792–7796.
  • Conlon, F. L., K. M. Lyons, N. Takaesu, K. S. Barth, A. Kispert, B. Herrmann, and E. J. Robertson. 1994. A primary requirement for nodal in the formation and maintenance of the primitive streak in the mouse. Development 120: 1919–1928.
  • Constam, D. B., and E. J. Robertson. 1999. Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J. Cell Biol. 144: 139–149.
  • Davis, S., T. H. Aldrich, N. Y. Ip, N. Stahl, S. Scherer, T. Farruggella, P. S. DiStefano, R. Curtis, N. Panayotatos, H. Gascan, S. Chevalier, and G. D. Yancopolous. 1993. Released form of CNTF receptor alpha component as a soluble mediator of CNTF responses. Science 259: 1736–1739.
  • Ding, J., L. Yang, Y. T. Yan, A. Chen, N. Desai, A. Wynshaw-Boris, and M. M. Shen. 1998. Cripto is required for correct orientation of the anterior-posterior axis in the mouse embryo. Nature 395: 702–707.
  • Dunn, D. E., J. Yu, S. Nagarajan, M. Devetten, F. F. Weichold, M. E. Medof, N. S. Young, and J. M. Liu. 1996. A knock-out model of paroxysmal nocturnal hemoglobinuria: pig-a(−) hematopoiesis is reconstituted following intercellular transfer of GPI-anchored proteins. Proc. Natl. Acad. Sci. USA 93: 7938–7943.
  • Friess, H., Y. Yamanaka, M. Buchler, M. S. Kobrin, E. Tahara, and M. Korc. 1994. Cripto, a member of the epidermal growth factor family, is over-expressed in human pancreatic cancer and chronic pancreatitis. Int. J. Cancer 56: 668–674.
  • Gritsman, K., J. Zhang, S. Cheng, E. Heckscher, W. S. Talbot, and A. F. Schier. 1999. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell 97: 121–132.
  • Harris, R. J., and M. W. Spellman. 1993. O-linked fucose and other post-translational modifications unique to EGF modules. Glycobiology 3: 219–224.
  • Hicks, C., S. H. Johnston, G. diSibio, A. Collazo, T. F. Vogt, and G. Weinmaster. 2000. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat. Cell Biol. 2: 515–520.
  • Hoodless, P. A., M. Pye, C. Chazaud, E. Labbe, L. Attisano, J. Rossant, and J. L. Wrana. 2001. FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes Dev. 15: 1257–1271.
  • Jing, S., D. Wen, Y. Yu, P. L. Holst, Y. Luo, M. Fang, R. Tamir, L. Antonio, Z. Hu, R. Cupples, J. C. Louis, S. Hu, B. W. Altrock, and G. M. Fox. 1996. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-alpha, a novel receptor for GDNF. Cell 85: 1113–1124.
  • Kannan, S., M. De Santis, M. Lohmeyer, D. J. Riese II, G. H. Smith, N. Hynes, M. Seno, R. Brandt, C. Bianco, G. Persico, N. Kenney, N. Normanno, I. Martinez-Lacaci, F. Ciardello, D. F. Stern, W. J. Gullick, and D. S. Salomon. 1997. Cripto enhances the tyrosine phosphorylation of Shc and activates mitogen-activated protein kinase (MAPK) in mammary epithelial cells. J. Biol. Chem. 272: 3330–3335.
  • Kooyman, D. L., G. W. Byrne, S. McClellan, D. Nielsen, M. Tone, H. Waldmann, T. M. Coffman, K. R. McCurry, J. L. Platt, and J. S. Logan. 1995. In vivo transfer of GPI-linked complement restriction factors from erythrocytes to the endothelium. Science 269: 89–92.
  • Kumar, A., V. Novoselov, A. J. Celeste, N. M. Wolfman, P. ten Dijke, and M. R. Kuehn. 2001. Nodal signaling uses activin and transforming growth factor-beta receptor-regulated Smads. J. Biol. Chem. 276: 656–661.
  • Kuniyasu, H., K. Yoshida, H. Yokozaki, W. Yasui, H. Ito, T. Toge, F. Ciardiello, M. G. Persico, T. Saeki, D. S. Salomon, and E. Tahara. 1991. Expression of cripto, a novel gene of the epidermal growth factor family, in human gastrointestinal carcinomas. Jpn. J. Cancer Res. 82: 969–973.
  • Lewis, K. A., P. C. Gray, A. L. Blount, L. A. MacConell, E. Wiater, L. M. Bilezikjian, and W. Vale. 2000. Betaglycan binds inhibin and can mediate functional antagonism of activin signalling. Nature 404: 411–414.
  • Liu, F., C. Pouponnot, and J. Massagué. 1997. Dual role of the Smad4/DPC4 tumor suppressor in TGFβ-inducible transcriptional complexes. Genes Dev. 11: 3157–3167.
  • Liu, F., F. Ventura, J. Doody, and J. Massague. 1995. Human type II receptor for bone morphogenic proteins (BMPs): extension of the two-kinase receptor model to the BMPs. Mol. Cell. Biol. 15: 3479–3486.
  • Massagué, J. 1998. TGF-β signal transduction. Annu. Rev. Biochem. 67: 753–791.
  • Massague, J., and Y. G. Chen. 2000. Controlling TGF-beta signaling. Genes Dev. 14: 627–644.
  • Minchiotti, G., G. Manco, S. Parisi, C. T. Lago, F. Rosa, and M. G. Persico. 2001. Structure-function analysis of the EGF-CFC family member Cripto identifies residues essential for nodal signalling. Development 128: 4501–4510.
  • Minchiotti, G., S. Parisi, G. Liguori, M. Signore, G. Lania, E. D. Adamson, C. T. Lago, and M. G. Persico. 2000. Membrane-anchorage of Cripto protein by glycosylphosphatidylinositol and its distribution during early mouse development. Mech. Dev. 90: 133–142.
  • Moloney, D. J., and R. S. Haltiwanger. 1999. The O-linked fucose glycosylation pathway: identification and characterization of a uridine diphosphoglucose: fucose-beta1,3-glucosyltransferase activity from Chinese hamster ovary cells. Glycobiology 9: 679–687.
  • Moloney, D. J., V. M. Panin, S. H. Johnston, J. Chen, L. Shao, R. Wilson, Y. Wang, P. Stanley, K. D. Irvine, R. S. Haltiwanger, and T. F. Vogt. 2000. Fringe is a glycosyltransferase that modifies Notch. Nature 406: 369–375.
  • Moloney, D. J., L. H. Shair, F. M. Lu, J. Xia, R. Locke, K. L. Matta, and R. S. Haltiwanger. 2000. Mammalian Notch1 is modified with two unusual forms of O-linked glycosylation found on epidermal growth factor-like modules. J. Biol. Chem. 275: 9604–9611.
  • Mortensen, R. M., M. Zubiaur, E. J. Neer, and J. G. Seidman. 1991. Embryonic stem cells lacking a functional inhibitory G-protein subunit (αi2) produced by gene targeting of both alleles. Proc. Natl. Acad. Sci. USA 88: 7036–7040.
  • Norris, D. P., and E. J. Robertson. 1999. Asymmetric and node-specific nodal expression patterns are controlled by two distinct cis-acting regulatory elements. Genes Dev. 13: 1575–1588.
  • Osada, S. I., Y. Saijoh, A. Frisch, C. Y. Yeo, H. Adachi, M. Watanabe, M. Whitman, H. Hamada, and C. V. Wright. 2000. Activin/nodal responsiveness and asymmetric expression of a Xenopus nodal-related gene converge on a FAST-regulated module in intron 1. Development 127: 2503–2514.
  • Paratcha, G., F. Ledda, L. Baars, M. Coulpier, V. Besset, J. Anders, R. Scott, and C. F. Ibanez. 2001. Released GFRalpha1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29: 171–184.
  • Pogoda, H. M., L. Solnica-Krezel, W. Driever, and D. Meyer. 2000. The zebrafish forkhead transcription factor FoxH1/Fast1 is a modulator of nodal signaling required for organizer formation. Curr. Biol. 10: 1041–1049.
  • Qi, C. F., D. S. Liscia, N. Normanno, G. Merlino, G. R. Johnson, W. J. Gullick, F. Ciardiello, T. Saeki, R. Brandt, N. Kim, N. Kenney, and D. S. Salomon. 1994. Expression of transforming growth factor alpha, amphiregulin and cripto-1 in human breast carcinomas. Br. J. Cancer 69: 903–910.
  • Rabbani, S. A., A. P. Mazar, S. M. Bernier, M. Haq, I. Bolivar, J. Henkin, and D. Goltzman. 1992. Structural requirements for the growth factor activity of the amino-terminal domain of urokinase. J. Biol. Chem. 267: 14151–14156.
  • Reissmann, E., H. Jornvall, A. Blokzijl, O. Andersson, C. Chang, G. Minchiotti, M. G. Persico, C. F. Ibanez, and A. H. Brivanlou. 2001. The orphan receptor ALK7 and the activin receptor ALK4 mediate signaling by Nodal proteins during vertebrate development. Genes Dev. 15: 2010–2022.
  • Saeki, T., K. Stromberg, C. F. Qi, W. J. Gullick, E. Tahara, N. Normanno, F. Ciardiello, N. Kenney, G. R. Johnson, and D. S. Salomon. 1992. Differential immunohistochemical detection of amphiregulin and cripto in human normal colon and colorectal tumors. Cancer Res. 52: 3467–3473.
  • Saijoh, Y., H. Adachi, R. Sakuma, C. Y. Yeo, K. Yashiro, M. Watanabe, H. Hashiguchi, K. Mochida, S. Ohishi, M. Kawabata, K. Miyazono, M. Whitman, and H. Hamada. 2000. Left-right asymmetric expression of lefty2 and nodal is induced by a signaling pathway that includes the transcription factor FAST2. Mol. Cell 5: 35–47.
  • Salomon, D. S., C. Bianco, and M. De Santis. 1999. Cripto: a novel epidermal growth factor (EGF)-related peptide in mammary gland development and neoplasia. Bioessays 21: 61–70.
  • Schier, A. F., S. C. F. Neuhauss, K. A. Helde, W. S. Talbot, and W. Driever. 1997. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. Development 124: 327–342.
  • Schier, A. F., and M. M. Shen. 2000. Nodal signalling in vertebrate development. Nature 403: 385–389.
  • Schiffer, S. G., S. Foley, A. Kaffashan, X. Hronowski, A. E. Zichittella, C. Y. Yeo, K. Miatkowski, H. B. Adkins, B. Damon, M. Whitman, D. Salomon, M. Sanicola, and K. P. Williams. 2001. Fucosylation of Cripto is required for its ability to facilitate nodal signaling. J. Biol. Chem. 276: 37769–37778.
  • Shen, M. M., and A. F. Schier. 2000. The EGF-CFC gene family in vertebrate development. Trends Genet. 16: 303–309.
  • Shen, M. M., H. Wang, and P. Leder. 1997. A differential display strategy identifies Cryptic, a novel EGF-related gene expressed in the axial and lateral mesoderm during mouse gastrulation. Development 124: 429–442.
  • Shimizu, K., S. Chiba, T. Saito, K. Kumano, T. Takahashi, and H. Hirai. 2001. Manic fringe and lunatic fringe modify different sites of the Notch2 extracellular region, resulting in different signaling modulation. J. Biol. Chem. 276: 25753–25758.
  • Sirotkin, H. I., M. A. Gates, P. D. Kelly, A. F. Schier, and W. S. Talbot. 2000. Fast1 is required for the development of dorsal axial structures in zebrafish. Curr. Biol. 10: 1051–1054.
  • Strahle, U., S. Jesuthasan, P. Blader, P. Garcia-Villalba, K. Hatta, and P. W. Ingham. 1997. one-eyed pinhead is required for development of the ventral midline of the zebrafish (Danio rerio) neural tube. Genes Funct. 1: 131–148.
  • Treanor, J. J., L. Goodman, F. de Sauvage, D. M. Stone, K. T. Poulsen, C. D. Beck, C. Gray, M. P. Armanini, R. A. Pollock, F. Hefti, H. S. Phillips, A. Goddard, M. W. Moore, A. Buj-Bello, A. M. Davies, N. Asai, M. Takahashi, R. Vandlen, C. E. Henderson, and A. Rosenthal. 1996. Characterization of a multicomponent receptor for GDNF. Nature 382: 80–83.
  • Varlet, I., J. Collignon, and E. J. Robertson. 1997. nodal expression in the primitive endoderm is required for specification of the anterior axis during mouse gastrulation. Development 124: 1033–1044.
  • Wang, Y., L. Shao, S. Shi, R. J. Harris, M. W. Spellman, P. Stanley, and R. S. Haltiwanger. 2001. Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase. J. Biol. Chem. 276: 40338–40345.
  • Watanabe, M., and M. Whitman. 1999. FAST-1 is a key maternal effector of mesoderm inducers in the early Xenopus embryo. Development 126: 5621–5634.
  • Whitman, M. 2001. Nodal signaling in early vertebrate embryos. Themes and variations. Dev. Cell 1: 605–617.
  • Xu, C., G. Liguori, M. G. Persico, and E. D. Adamson. 1999. Abrogation of the Cripto gene in mouse leads to failure of postgastrulation morphogenesis and lack of differentiation of cardiomyocytes. Development 126: 483–494.
  • Yamamoto, M., C. Meno, Y. Sakai, H. Shiratori, K. Mochida, Y. Ikawa, Y. Saijoh, and H. Hamada. 2001. The transcription factor FoxH1 (FAST) mediates Nodal signaling during anterior-posterior patterning and node formation in the mouse. Genes Dev. 15: 1242–1256.
  • Yeo, C., and M. Whitman. 2001. Nodal signals to Smads through Cripto-dependent and Cripto-independent mechanisms. Mol. Cell 7: 949–957.
  • Zhang, J., W. S. Talbot, and A. F. Schier. 1998. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92: 241–251.
  • Zhou, X., H. Sasaki, L. Lowe, B. L. Hogan, and M. R. Kuehn. 1993. Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature 361: 543–547.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.