54
Views
151
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Internalization-Dependent and -Independent Requirements for Transforming Growth Factor β Receptor Signaling via the Smad Pathway

, , , , &
Pages 4750-4759 | Received 02 Oct 2001, Accepted 18 Mar 2002, Published online: 27 Mar 2023

REFERENCES

  • Anders, R. A., S. L. Arline, J. J. E. Doré, Jr., and E. B. Leof. 1997. Distinct endocytic responses of heteromeric and homomeric transforming growth factor β receptors. Mol. Biol. Cell 8: 2133–2143.
  • Anders, R. A., J. J. E. Doré, Jr., S. A. Arline, N. Garamszegi, and E. B. Leof. 1998. Differential requirements for type I and type II TGFβ receptor kinase activity in ligand-mediated receptor endocytosis. J. Biol. Chem. 273: 23118–23125.
  • Anders, R. A., and E. B. Leof. 1996. Chimeric granulocyte/macrophage colony-stimulating factor/transforming growth factor-β (TGF-β) receptors define a model system for investigating the role of homomeric and heteromeric receptors in TGF-β signaling. J. Biol. Chem. 271: 21758–21766.
  • Carpenter, G. 2000. The EGF receptor: a nexus for trafficking and signaling. Bioessays 22: 697–707.
  • Ceresa, B. P., and S. L. Schmid. 2000. Regulation of signal transduction by endocytosis. Curr. Opin. Cell Biol. 12: 202–210.
  • Chen, F., and R. A. Weinberg. 1995. Biochemical evidence for the autophosphorylation and transphosphorylation of transforming growth factor beta receptor kinases. Proc. Natl. Acad. Sci. USA 92: 1565–1569.
  • Chow, J. C., G. Condorelli, and R. J. Smith. 1998. Insulin-like growth factor-1 receptor internalization regulates signaling via the Shc/mitogen-activated protein kinase pathway, but not the insulin receptor substrate-1 pathway. J. Biol. Chem. 273: 4672–4680.
  • DiFiore, P. P., and G. N. Gill. 1999. Endocytosis and mitogenic signaling. Curr. Opin. Cell Biol. 11: 483–488.
  • Doré, J. J. E., Jr., M. Edens, N. Garamszegi, and E. B. Leof. 1998. Heteromeric and homomeric transforming growth factor-β receptors show distinct signaling and endocytic responses in epithelial cells. J. Biol. Chem. 273: 31770–31777.
  • Entchev, E. V., A. Schwabedissen, and M. Gonzalez-Gaitan. 2000. Gradient formation of the TGF-β homolog Dpp. Cell 103: 981–991.
  • Gilboa, L., R. G. Wells, H. F. Lodish, and Y. I. Henis. 1998. Oligomeric structure of type I and type II transforming growth factor beta receptors-homodimers form in the ER and persist at the plasma membrane. J. Cell Biol. 140: 767–777.
  • Heller-Harrison, R. A., M. Morin, and M. P. Czech. 1995. Insulin regulation of membrane-associated insulin receptor substrate 1. J. Biol. Chem. 270: 24442–24450.
  • Hocevar, B. A., T. L. Brown, and P. H. Howe. 1999. TGF-β induces fibronectin synthesis through a c-Jun N-terminal kinase-dependent, Smad4-independent pathway. EMBO J. 18: 1345–1356.
  • Johannsen, L. E., T. Ringerike, J. Molnes, and I. H. Madshus. 2000. Epidermal growth factor receptor efficiently activates mitogen-activated protein kinase in HeLa cells and Hep2 cells conditionally defective in clathrin-dependent endocytosis. Exp. Cell Res. 2601: 136–145.
  • Kao, A. W., B. P. Ceresa, S. R. Santeler, and J. E. Pessin. 1998. Expression of a dominant interfering dynamin mutant in 3T3L1 adipocytes inhibits GLUT4 endocytosis without affecting insulin signaling. J. Biol. Chem. 273: 25450–25457.
  • Larkin, J. M., M. S. Brown, J. L. Goldstein, and R. G. W. Anderson. 1983. Depletion of intracellular potassium arrests coated pit formation and receptor mediated endocytosis in fibroblasts. Cell 33: 273–285.
  • Leof, E. B. 2000. Growth factor receptor signalling: location, location, location. Trends Cell Biol. 10: 343–348.
  • Luo, K., and H. F. Lodish. 1996. Signaling by chimeric erythropoietin-TGFβ receptors: homodimerization of the cytoplasmic domain of the type I TGFβ receptor and heterodimerization with the type II receptor are both required for intracellular signal transduction. EMBO J. 15: 4485–4496.
  • Massagué, J. 1998. TGF-β signal transduction. Annu. Rev. Biochem. 67: 753–791.
  • Massagué, J., S. W. Blain, and R. S. Lo. 2000. TGFβ signaling in growth control, cancer, and heritable disorders. Cell 103: 295–309.
  • Massagué, J., A. Hata, and F. Liu. 1997. TGF-β signalling through the Smad pathway. Trends Cell Biol. 7: 187–192.
  • Miller, W. E., and R. J. Lefkowitz. 2001. Expanding roles for beta-arrestins as scaffolds and adaptors in GPCR signaling and trafficking. Curr. Opin. Cell Biol. 13: 139–145.
  • Muramatsu, M., J. Yan, K. Eto, T. Tomoda, R. Yamada, and K. Arai. 1997. A chimeric serine/threonine kinase receptor system reveals the potential of multiple type II receptors to cooperate with transforming growth factor-β. Mol. Biol. Cell 8: 469–480.
  • Roettger, B. F., R. U. Rentsch, D. Pinon, E. Holicky, E. Hadac, J. M. Larkin, and L. J. Miller. 1995. Dual pathways of internalization of the cholecystokinin receptor. J. Cell Biol. 128: 1029–1041.
  • Schmid, S. L., M. A. McNiven, and P. De Camilli. 1998. Dynamin and its partners: a progress report. Curr. Opin. Cell Biol. 10: 504–512.
  • Sorkin, A., and G. Carpenter. 1993. Interaction of activated EGF receptors with coated pits adaptins. Science 261: 612–615.
  • Sorkin, A., T. McKinsey, W. Shih, T. Kirchhausen, and G. Carpenter. 1995. Stoichiometric interaction of the epidermal growth factor receptor with the clathrin-associatied protein complex AP-2. J. Biol. Chem. 270: 619–625.
  • Stenmark, H., and R. Aasland. 1999. FYVE-finger proteins—effectors of an inositol lipid. J. Cell Sci. 112: 4175–4183.
  • Sweitzer, S. M., and J. E. Hinshaw. 1998. Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 5: 1021–1029.
  • ten Dijke, P., K. Miyazono, and C.-H. Heldiin. 2000. Signaling inputs converge on nuclear effectors in TGF-β signaling. Trends Biochem. Sci. 25: 64–70.
  • Tsukazaki, T., T. A. Chiang, A. F. Davison, L. Attisano, and J. L. Wrana. 1998. SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 95: 779–791.
  • Ulloa, L., J. Doody, and J. Massagué. 1999. Inhibition of transforming growth factor-β/Smad signalling by the interferon-gamma/STAT pathway. Nature 397: 710–713.
  • Weigmann, K., S. Schutze, T. Machleidt, and D. Witte. 1994. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78: 1005–1015.
  • Wells, A., J. B. Welsh, C. S. Lazar, H. S. Wiley, G. N. Gill, and M. G. Rosenfeld. 1990. Ligand-induced transformation by a noninternalizing epidermal growth factor receptor. Science 247: 962–964.
  • Wells, R. G., L. Gilboa, Y. Sun, X. Liu, Y. I. Henis, and H. F. Lodish. 1999. Transforming growth factor-β induces formation of a dithiothreitol-resistant type I/type II receptor complex in live cells. J. Biol. Chem. 274: 5716–5722.
  • Wiley, H. S., and D. D. Cunningham. 1982. The endocytotic rate constant. A cellular parameter for quantitating receptor-mediated endocytosis. J. Biol. Chem. 257: 4222–4229.
  • Wrana, J. L., L. Attisano, J. Carcamo, A. Zentella, J. Doody, M. Laiho, X. F. Wang, and J. Massagué. 1992. TGFβ signals through a heteromeric protein kinase receptor complex. Cell 71: 1003–1014.
  • Wrana, J. L., L. Attisano, R. Wieser, F. Ventura, and J. Massagué. 1994. Mechanism of activation of the TGF-β receptor. Nature 370: 341–347.
  • Xiao, Z., X. Liu, Y. I. Henis, and H. F. Lodish. 2000. A distinct nuclear localization signal in the N terminus of Smad 3 determines its ligand-induced nuclear translocation. Proc. Natl. Acad. Sci. USA 97: 7853–7858.
  • Yae, J., R. S. Frey, and K. Mulder. 1999. Cross-talk between the Smad1 and Ras/MEK signaling pathways for TGF-β. Oncogene 58: 4752–4757.
  • York, R. D., D. C. Molliver, S. S. Grewal, P. E. Stenberg, E. W. McCleskey, and P. J. Stork. 2000. Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol. Cell. Biol. 20: 8069–8083.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.