8
Views
47
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Caspase Processing and Nuclear Export of CTP:Phosphocholine Cytidylyltransferase α during Farnesol-Induced Apoptosis

, &
Pages 4851-4862 | Received 06 Nov 2001, Accepted 29 Mar 2002, Published online: 27 Mar 2023

REFERENCES

  • Adany, I., E. M. Yazlovitskaya, J. S. Haug, P. A. Voziyan, and G. Melnykovych. 1994. Differences in sensitivity to farnesol toxicity between neoplastically and non-neoplastically derived cells in culture. Cancer Lett. 79: 175–179.
  • Anthony, M. L., M. Zhao, and K. M. Brindle. 1999. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. J. Biol. Chem. 274: 19686–19692.
  • Araki, W., and R. J. Wurtman. 1997. Control of membrane phosphatidylcholine biosynthesis by diacylglycerol levels in neuronal cells undergoing neurite outgrowth. Proc. Natl. Acad. Sci. USA 94: 11946–11950.
  • Baburina, I., and S. Jackowski. 1999. Cellular responses to excess phospholipid. J. Biol. Chem. 274: 9400–9408.
  • Baburina, I., and S. Jackowski. 1998. Apoptosis by 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine is prevented by increased expression of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 273: 2169–2173.
  • Boggs, K. P., C. O. Rock, and S. Jackowski. 1995. Lysophosphatidylcholine and 1-O-octadecl-2-O-methyl-rac-glycero-3-phosphocholine inhibit the CDP-choline pathway for phosphatidylcholine synthesis at the CTP:phosphocholine cytidylyltransferase step. J. Biol. Chem. 270: 7757–7764.
  • Buendia, B., A. Santa-Maria, and J. C. Courvalin. 1999. Caspase-dependent proteolysis of integral and peripheral proteins of the nuclear membrane and nuclear pore complex proteins during apoptosis. J. Cell Sci. 112: 1743–1753.
  • Cocco, L., A. M. Martelli, R. Stewart Gilmour, S. G. Rhee, and F. A. Manzoli. 2001. Nuclear phospholipase C signaling. Biochim. Biophys. Acta 1530: 1–14.
  • Cornell, R. B., and I. C. Northwood. 2000. Regulation of CTP:phosphocholine cytidylyltransferase by amphitropism and relocalization. Trends Biochem. Sci. 25: 441–447.
  • Cornell, R. B., and D. E. Vance. 1987. Translocation of CTP:phosphocholine cytidylyltransferase from cytosol to membranes in HeLa cells: stimulation by fatty acids, fatty alcohol, mono-and diacylglycerol. Biochim. Biophys. Acta 919: 26–37.
  • Cornell, R. B., and D. E. Vance. 1987. Binding of CTP:phosphocholine cytidylyltransferase to large unilamellar vesicles. Biochim. Biophys. Acta 919: 37–48.
  • Cornell, R. B. 1989. Chemical cross-linking reveals a dimeric structure for CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 264: 9077–9082.
  • Cui, Z., M. Houweling, M. H. Chen, M. Record, H. Chap, D. E. Vance, and F. Terce. 1996. A genetic defect in phosphatidylcholine biosynthesis triggers apoptosis in Chinese hamster ovary cells. J. Biol. Chem. 271: 14668–14671.
  • DeLong, C. J., L. Qin, and Z. Cui. 2000. Nuclear localization of enzymatically active green fluorescent protein-CTP:phosphocholine cytidylyltransferase α fusion protein is independent of the cell cycle conditions and cell types. J. Biol. Chem. 275: 32325–32330.
  • Esko, J. D., M. M. Wermuth, and C. R. Raetz. 1981. Thermostable CDP-choline synthetase in an animal cell mutant defective in lecithin formation. J. Biol. Chem. 256: 7388–7393.
  • Fornerod, M., M. Ohno, M. Yoshida, and I. W. Mattaj. 1997. CRM-1 is an export receptor for leucine-rich nuclear export signals. Cell 90: 1051–1060.
  • Houweling, M., H. Jamil, G. M. Hatch, and D. E. Vance. 1994. Dephosphorylation of CTP:phosphocholine cytidylyltransferase is not required for binding to membranes. J. Biol. Chem. 269: 7544–7551.
  • Hunt, A. N., G. T. Clark, G. S. Attard, and A. D. Postle. 2001. Highly saturated endonuclear phosphatidylcholine is synthesized in situ and colocated with CDP-choline pathway enzymes. J. Biol. Chem. 276: 8492–8499.
  • Jackowski, S. 1994. Coordination of membrane phospholipid synthesis with the cell cycle. J. Biol. Chem. 269: 3858–3867.
  • Jamil, H., A. K. Utal, and D. E. Vance. 1992. Evidence that cyclic AMP-induced inhibition of phosphatidylcholine biosynthesis is caused by a decrease in cellular diacylglycerol levels in cultured rat hepatocytes. J. Biol. Chem. 267: 1752–1760.
  • Kent, C. 1999. CTP:phosphocholine cytidylyltransferase. Biochim. Biophys. Acta 257: 643–650.
  • Lagace, T. A., M. K. Storey, and N. D. Ridgway. 2000. Regulation of phosphatidylcholine metabolism in Chinese hamster ovary cells by the sterol regulatory element-binding protein (SREBP)/SREBP-cleavage activating protein pathway. J. Biol. Chem. 275: 14367–14374.
  • Lykidis, A., K. G. Murti, and S. Jackowski. 1998. Cloning and characterization of a second CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 273: 14022–14029.
  • Lykidis, A., I. Baburina, and S. Jackowski. 1999. Distribution of CTP:phosphocholine cytidylyltransferase (CCT) isoforms. J. Biol. Chem. 274: 26992–27001.
  • Lykidis, A., P. Jackson, and S. Jackowski. 2001. Lipid activation of CTP:phosphocholine cytidylyltransferase α: characterization and identification of a second activation domain. Biochemistry 40: 494–503.
  • MacDonald, J. I. S., and C. Kent. 1993. Baculovirus-mediated expression of rat liver CTP:phosphocholine cytidylyltransferase. Protein Expr. Purif. 4: 1–7.
  • Masuda, Y., M. Yoda, H. Ohizumi, T. Aiuchi, M. Watabe, S. Nakajo, and K. Nakaya. 1997. Activation of protein kinase C prevents induction of apoptosis by geranylgeraniol in human leukemic HL60 cells. Int. J. Cancer 71: 691–697.
  • Miquel, K., A. Pradines, F. Terce, S. Selmi, and G. Favre. 1998. Competitive inhibition of choline phosphotransferase by geranylgeraniol and farnesol inhibits phosphatidylcholine synthesis and induces apoptosis in human lung adenocarcinoma A549 cells. J. Biol. Chem. 273: 26179–26186.
  • Nakaya, M., M. Yutaka, S. Mihara, T. Aiuchi, T. Shibayama-Imazu, S. Nakajo, and K. Nakaya. 1999. Analysis of caspases that are activated during apoptosis in leukemic U937 cells in response to geranylgeraniol. Anticancer Res. 19: 5063–5068.
  • Northwood, I. C., A. H. Tong, B. Crawford, A. E. Drobnies, and R. B. Cornell. 1999. Shuttling of CTP:phosphocholine cytidylyltransferase between the nucleus and endoplasmic reticulum accompanies the wave of phosphatidylcholine synthesis during the G0/G1 transition. J. Biol. Chem. 274: 26240–26248.
  • Nyormoi, O., Z. Wang, D. Doan, M. Ruiz, D. McConkey, and M. Bar-Ele. 2001. Transcription factor AP-2a is preferentially cleaved by caspase 6 and degraded by proteosome during tumor necrosis factor alpha-induced apoptosis in breast cancer cells. Mol. Cell. Biol. 21: 4856–4867.
  • Orth, K., A. M. Chinnaiyan, M. Garg, C. J. Froelich, and V. M. Dixit. 1996. The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J. Biol. Chem. 271: 16443–16446.
  • Ridgway, N. D. 1989. Phosphatidylethanolamine N-methyltransferase, p. 103–120. In D. E. Vance (ed.), Phosphatidylcholine metabolism. CRC Press, Boca Raton, Fla.
  • Ridsdale, R., I. Tseu, J. Wang, and M. Post. 2001. CTP:phosphocholine cytidylyltransferase α is a cytosolic protein in pulmonary epithelial cells and tissues. J. Biol. Chem. 276: 49148–49155.
  • Rioja, A., A. R. Pizzey, C. M. Marson, and N. S. Thomas. 2000. Preferential induction of apoptosis of leukemic cells by farnesol. FEBS Lett. 467: 291–295.
  • Schirmer, E. C., T. Guan, and L. Gerace. 2001. Involvement of the lamin rod domain in heterotypic interactions important for nuclear organization. J. Cell Biol. 153: 479–489.
  • Slee, E. A., C. Adrain, and S. J. Martin. 2001. Executioner caspase-3, -6 and -7 perform distinct roles during the demolition phase of apoptosis. J. Biol. Chem. 276: 7320–7326.
  • Sleight, R., and C. Kent. 1983. Regulation of phosphatidylcholine biosynthesis in mammalian cells. II. Effects of phospholipase C treatment on the activity and subcellular distribution of CTP:phosphocholine cytidylyltransferase in Chinese hamster ovary and cell lines. J. Biol. Chem. 258: 831–835.
  • Stanislaw, K., M. Krajewska, L. M. Ellerby, K. Welsh, Z. Xie, Q. L. Deveraux, G. S. Salvesen, D. E. Bredesen, R. E. Rosenthal, G. Fiskum, and J. C. Reed. 1999. Release of casapse-9 from the mitochondria during neuronal apoptosis and cerebral ischemia. Proc. Natl. Acad. Sci. USA 96: 5752–5757.
  • Storey, M. K., D. M. Byers, H. W. Cook, and N. D. Ridgway. 1997. Decreased phosphatidylcholine biosynthesis and abnormal distribution of CTP:phosphocholine cytidylyltransferase in cholesterol auxotrophic Chinese hamster ovary cells. J. Lipid Res. 38: 711–722.
  • Thronberry, N. A., T. A. Reno, E. P. Peterson, D. M. Rasper, T. Timkey, M. Garcia-Calco, V. M. Houtzager, P. A. Nordstrom, S. Roy, J. P. Vaillancourt, K. T. Chapman, and D. W. Nicholson. 1997. A combinatorial approach defines specificities of members of the caspase family and granzyme B. J. Biol. Chem. 272: 17907–17911.
  • Tronchere, H., V. Planat, M. Record, F. Terce, G. Ribbes, and H. Chap. 1995. Phosphatidylcholine turnover in activated human neutrophils. J. Biol. Chem. 270: 13138–13146.
  • Ura, S., N. Masuyama, J. D. Graves, and Y. Gotoh. 2001. Caspase cleavage of MST1 promotes nuclear translocation and chromatin condensation. Proc. Natl. Acad. Sci. USA 98: 10148–10153.
  • Voziyan, P. A., C. M. Goldner, and G. Melnykovych. 1993. Farnesol inhibits phosphocholine biosynthesis in cultured cells by decreasing cholinephosphotransferase activity. Biochem. J. 295: 757–762.
  • Voziyan, P. A., J. S. Haug, and G. Melnykovych. 1995. Mechanism of farnesol cytotoxicity: further evidence for the role of PKC-dependent signal transduction in farnesol-induced apoptotic cell death. Biochem. Biophys. Res. Commun. 212: 479–486.
  • Wang, Y., T. D. Sweitzer, P. A. Weinhold, and C. Kent. 1993. Nuclear localization of soluble CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 268: 5899–5904.
  • Wang, Y., J. I. MacDonald, and C. Kent. 1995. Identification of the nuclear localization signal of rat CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 270: 354–360.
  • Watkins, J. D., and C. Kent. 1992. Immunolocalization of membrane-associated CTP:phosphocholine cytidylyltransferase in phosphatidylcholine-deficient Chinese hamster ovary cells. J. Biol. Chem. 267: 5686–5692.
  • Wolf, B. B., and D. R. Green. 1999. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J. Biol. Chem. 274: 20049–20052.
  • Wright, M. M., A. L. Henneberry, T. A. Lagace, N. D. Ridgway, and C. R. McMaster. 2001. Uncoupling farnesol-induced apoptosis from its inhibition of phosphatidylcholine synthesis. J. Biol. Chem. 276: 25254–25261.
  • Wright, P. S., J. N. Morand, and C. Kent. 1985. Regulation of phosphatidylcholine biosynthesis in Chinese hamster ovary cells by reversible membrane association of CTP:phosphocholine cytidylyltransferase. J. Biol. Chem. 260: 7919–7926.
  • Wyllie, A. H., J. F. R. Kerr, and A. R. Currie. 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol. 68: 251–305.
  • Yang, W., and S. Jackowski. 1995. Lipid activation of CTP:phosphocholine cytidylyltransferase is regulated by the phosphorylated carboxyl-terminal domain. J. Biol. Chem. 270: 1650–16506.
  • Yang, W., K. P. Boggs, and S. Jackowski. 1995. The association of lipid activators with the amphipathic helical domain of CTP:phosphocholine cytidylyltransferase accelerates catalysis by increasing the affinity of the enzyme for CTP. J. Biol. Chem. 270: 23951–23957.
  • Yang, J., J. Wang, I. Tseu, M. Kuliszewski, W. Lee, and M. Post. 1997. Identification of an 11-residue portion of CTP-phosphocholine cytidylyltransferase that is required for enzyme-membrane interactions. Biochem. J. 325: 29–38.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.