53
Views
70
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Maleylacetoacetate Isomerase (MAAI/GSTZ)-Deficient Mice Reveal a Glutathione-Dependent Nonenzymatic Bypass in Tyrosine Catabolism

, , , , &
Pages 4943-4951 | Received 29 Nov 2001, Accepted 26 Mar 2002, Published online: 27 Mar 2023

REFERENCES

  • Anandarajah, K., P. M. Kiefer, Jr., B. S. Donohoe, and S. D. Copley. 2000. Recruitment of a double bond isomerase to serve as a reductive dehalogenase during biodegradation of pentachlorophenol. Biochemistry 39: 5303–5311.
  • Bateman, R. L., P. Bhanumoorthy, J. F. Witte, R. W. McClard, M. Grompe, and D. E. Timm. 2001. Mechanistic inferences from the crystal structure of fumarylacetoacetate hydrolase with a bound phosphorus-based inhibitor. J. Biol. Chem. 276: 15284–15291.
  • Belanger, L., M. Belanger, L. Prive, J. Larochelle, M. Tremblay, and G. Aubin. 1973. Hereditary tyrosinemia and alpha-1-fetoprotein. I. Clinical value of alpha-fetoprotein in hereditary tyrosinemia. Pathol. Biol. (Paris) 21: 449–455.
  • Berger, R., K. Michals, J. Galbraeth, and R. Matalon. 1988. Tyrosinemia type Ib caused by maleylacetoacetate isomerase deficiency: a new enzyme defect. Pediatr. Res. 23: 328A.
  • Berhane, K., M. Widersten, A. Engstrom, J. W. Kozarich, and B. Mannervik. 1994. Detoxication of base propenals and other alpha, beta-unsaturated aldehyde products of radical reactions and lipid peroxidation by human glutathione transferases. Proc. Natl. Acad. Sci. USA 91: 1480–1484.
  • Board, P. G., R. T. Baker, G. Chelvanayagam, and L. S. Jermiin. 1997. Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem. J. 328: 929–935.
  • Cornett, R., M. O. James, G. N. Henderson, J. Cheung, A. L. Shroads, and P. W. Stacpoole. 1999. Inhibition of glutathione S-transferase zeta and tyrosine metabolism by dichloroacetate: a potential unifying mechanism for its altered biotransformation and toxicity. Biochem. Biophys. Res. Commun. 262: 752–756.
  • Dixon, D. P., D. J. Cole, and R. Edwards. 2000. Characterisation of a zeta class glutathione transferase from Arabidopsis thaliana with a putative role in tyrosine catabolism. Arch. Biochem. Biophys. 384: 407–412.
  • Endo, F., S. Kubo, H. Awata, K. Kiwaki, H. Katoh, Y. Kanegae, I. Saito, J. Miyazaki, T. Yamamoto, C. Jakobs, S. Hattori, and I. Matsuda. 1997. Complete rescue of lethal albino c14CoS mice by null mutation of 4-hydroxyphenylpyruvate dioxygenase and induction of apoptosis of hepatocytes in these mice by in vivo retrieval of the tyrosine catabolic pathway. J. Biol. Chem. 272: 24426–24432.
  • Fernández-Cañón, J. M., B. Granadino, D. Beltran-Valero de Bernabe, M. Renedo, E. Fernandez-Ruiz, M. A. Penalva, and S. Rodriguez de Cordoba. 1996. The molecular basis of alkaptonuria. Nat. Genet. 14: 19–24.
  • Fernández-Cañón, J. M., J. Hejna, C. Reifsteck, S. Olson, and M. Grompe. 1999. Gene structure, chromosomal location, and expression pattern of maleylacetoacetate isomerase. Genomics 58: 263–269.
  • Fernández-Cañón, J. M., and M. A. Peñalva. 1998. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. J. Biol. Chem. 273: 329–337.
  • Fernández-Cañón, J. M., and M. A. Peñalva. 1995. Fungal metabolic model for human type I hereditary tyrosinaemia. Proc. Natl. Acad. Sci. USA 92: 9132–9136.
  • Fernández-Cañón, J. M., and M. A. Penalva. 1997. Spectrophotometric determination of homogentisate using Aspergillus nidulans homogentisate dioxygenase. Anal. Biochem. 245: 218–221.
  • Garrod, A. E. 1902. The incidence of alkaptonuria: A study in chemical individuality. Lancet ii: 1616–1620.
  • Grompe, M. 2001. The pathophysiology and treatment of hereditary tyrosinemia type 1. Semin. Liver Dis. 21: 563–571.
  • Grompe, M., M. Al-Dhalimy, M. Finegold, C. N. Ou, T. Burlingame, N. G. Kennaway, and P. Soriano. 1993. Loss of fumarylacetoacetate hydrolase is responsible for the neonatal hepatic dysfunction phenotype of lethal albino mice. Genes Dev. 7: 2298–2307.
  • Grompe, M., S. Lindstedt, M. al-Dhalimy, N. G. Kennaway, J. Papaconstantinou, C. A. Torres-Ramos, C. N. Ou, and M. Finegold. 1995. Pharmacological correction of neonatal lethal hepatic dysfunction in a murine model of hereditary tyrosinaemia type I. Nat. Genet. 10: 453–460.
  • Jorquera, R., and R. M. Tanguay. 1997. The mutagenicity of the tyrosine metabolite, fumarylacetoacetate, is enhanced by glutathione depletion. Biochem. Biophys. Res. Commun. 232: 42–48.
  • Knox, W. E., and S. W. Edwards. 1955. Enzymes involved in conversion of tyrosine to acetoacetate. Methods Enzymol. 2: 287–300.
  • Lee, H. E., and S. Seltzer. 1989. cis-β-Acetylacrylate is a substrate for maleylacetoacetate cis-trans isomerase. Mechanistic implications. Biochem. Int. 18: 91–97.
  • Lindblad, B., S. Lindstedt, and G. Steen. 1977. On the enzymic defects in hereditary tyrosinemia. Proc. Natl. Acad. Sci. USA 74: 4641–4645.
  • Lindstedt, S., E. Holme, E. A. Lock, O. Hjalmarson, and B. Strandvik. 1992. Treatment of hereditary tyrosinaemia type I by inhibition of 4-hydroxyphenylpyruvate dioxygenase. Lancet 340: 813–817.
  • Mahuran, D. J., R. H. Angus, C. V. Braun, S. S. Sim, and D. E. Schmidt, Jr. 1977. Characterization and substrate specificity of fumarylacetoacetate fumarylhydrolase. Can. J. Biochem. 55: 1–8.
  • Manning, K., M. Al-Dhalimy, M. Finegold, and M. Grompe. 1999. In vivo suppressor mutations correct a murine model of hereditary tyrosinemia type I. Proc. Natl. Acad. Sci. USA 96: 11928–11933.
  • Mitchell, G. A., M. Grompe, M. Lambert, and R. M. Tanguay. 2001. Hypertyrosinemia, p. 1777–1805. In D. Valle (ed.), The metabolic and molecular basis of inherited disease, 9th ed., vol. 2. McGraw-Hill, New York, N.Y.
  • Nebert, D. W., A. L. Roe, M. Z. Dieter, W. A. Solis, Y. Yang, and T. P. Dalton. 2000. Role of the aromatic hydrocarbon receptor and [Ah] gene battery in the oxidative stress response, cell cycle control, and apoptosis. Biochem. Pharmacol. 59: 65–85.
  • Plummer, J. L., B. R. Smith, H. Sies, and J. R. Bend. 1981. Chemical depletion of glutathione in vivo. Methods Enzymol 77: 50–59.
  • Polekhina, G., P. G. Board, A. C. Blackburn, and M. W. Parker. 2001. Crystal structure of maleylacetoacetate isomerase/glutathione transferase zeta reveals the molecular basis for its remarkable catalytic promiscuity. Biochemistry 40: 1567–1576.
  • Rowe, J. D., Y. V. Patskovsky, L. N. Patskovska, E. Novikova, and I. Listowsky. 1998. Rationale for reclassification of a distinctive subdivision of mammalian class Mu glutathione S-transferases that are primarily expressed in testis. J. Biol. Chem. 273: 9593–9601.
  • Russo, P., and S. O'Regan. 1990. Visceral pathology of hereditary tyrosinemia type I. Am. J. Hum. Genet. 47: 317–324.
  • Scriver, C. R., and S. Kaufman. 2001. Hyperphenylalaninemia: phenylalanine hydroxylase deficiency, p. 1667–1724. In D. Valle (ed.), The metabolic and molecular basis of inherited disease, 9th ed., vol. 2. McGraw-Hill, New York, N.Y.
  • Seltzer, S. 1989. Maleylacetoacetate cis-trans isomerase, p. 733–751. In D. Dolphin, R. Poulson, and O. Avramovic (ed.), Coenzymes and cofactors, vol. 3, part A. Wiley, New York, N.Y.
  • Seltzer, S. 1973. Purification and properties of maleylacetone cis-trans isomerase from vibrio 01. J. Biol. Chem. 248: 215–222.
  • Seltzer, S., and M. Lin. 1979. Maleylacetone cis-trans isomerase. Mechanism of interaction of coenzyme glutathione and substrate maleylacetone in the presence and absence of enzyme. J. Am. Chem. Soc. 101: 3091–3097.
  • Tanguay, R. M., R. Jorquera, J. Poudrier, and M. St-Louis. 1996. Tyrosine and its catabolites: from disease to cancer. Acta Biochim. Pol. 43: 209–216.
  • Thom, R., D. P. Dixon, R. Edwards, D. J. Cole, and A. J. Lapthorn. 2001. The structure of a zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. J. Mol. Biol. 308: 949–962.
  • Tong, Z., P. G. Board, and M. W. Anders. 1998. Glutathione transferase zeta catalyses the oxygenation of the carcinogen dichloroacetic acid to glyoxylic acid. Biochem. J. 331(Pt. 2): 371–374.
  • Tong, Z., P. G. Board, and M. W. Anders. 1998. Glutathione transferase zeta-catalyzed biotransformation of dichloroacetic acid and other alpha-haloacids. Chem. Res. Toxicol. 11: 1332–1338.
  • Tuchman, M., L. D. Bowers, K. D. Fregien, P. J. Crippin, and W. Krivit. 1984. Capillary gas chromatographic separation of urinary organic acids. Retention indices of 101 urinary acids on a 5% phenylmethyl silicone capillary column. J. Chromatogr. Sci. 22: 198–202.
  • Tuchman, M., C. B. Whitley, M. L. Ramnaraine, L. D. Bowers, K. D. Fregien, and W. Krivit. 1984. Determination of urinary succinylacetone by capillary gas chromatography. J. Chromatogr. Sci. 22: 211–215.
  • Vasiliou, V., A. Puga, C. Y. Chang, M. W. Tabor, and D. W. Nebert. 1995. Interaction between the Ah receptor and proteins binding to the AP-1-like electrophile response element (EpRE) during murine phase II [Ah] battery gene expression. Biochem. Pharmacol. 50: 2057–2068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.