5
Views
17
CrossRef citations to date
0
Altmetric
Gene Expression

Multiple Roles for SR Proteins in trans Splicing

&
Pages 5337-5346 | Received 04 Mar 2002, Accepted 24 Apr 2002, Published online: 27 Mar 2023

REFERENCES

  • Berget, S. M. 1995. Exon recognition in vertebrate splicing. J. Biol. Chem. 270: 2411–2414.
  • Boukis, L. A., and J. P. Bruzik. 2001. Functional selection of splicing enhancers that activate trans-splicing in vitro. RNA 7: 793–805.
  • Bruzik, J. P. 1996. Splicing glue: a role for SR proteins in trans splicing? Microb. Pathog. 21: 149–155.
  • Bruzik, J. P., and T. Maniatis. 1995. Enhancer-dependent interaction between 5′; and 3′; splice sites in trans. Proc. Natl. Acad. Sci. USA 92: 7056–7059.
  • Bruzik, J. P., K. Van Doren, D. Hirsh, and J. A. Steitz. 1988. Trans splicing involves a novel form of small nuclear ribonucleoprotein particles. Nature 335: 559–562.
  • Cáceres, J. F., G. R. Screaton, and A. R. Krainer. 1998. A specific subset of SR proteins shuttles continuously between the nucleus and the cytoplasm. Genes Dev. 12: 55–66.
  • Cao, W., S. F. Jamison, and M. A. Garcia-Blanco. 1997. Both phosphorylation and dephosphorylation of ASF/SF2 are required for pre-mRNA splicing in vitro. RNA 3: 1456–1467.
  • Cardinali, B., P. T. W. Cohen, and A. I. Lamond. 1994. Protein phosphatase 1 can modulate alternative 5′; splice site selection in a HeLa splicing extract. FEBS Lett. 352: 276–280.
  • Colwill, K., L. L. Feng, J. M. Yeakley, G. D. Gish, J. F. Cáceres, T. Pawson, and X.-D. Fu. 1996. SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. J. Biol. Chem. 271: 24569–24575.
  • Colwill, K., T. Pawson, B. Andrews, J. Prasad, J. L. Manley, J. C. Bell, and P. I. Duncan. 1996. The Clk/Sty protein kinase phosphorylates SR splicing factors and regulates their intranuclear distribution. EMBO J. 15: 265–275.
  • Eperon, I. C., O. V. Makarova, A. Mayeda, S. H. Munroe, J. F. Cáceres, D. G. Hayward, and A. R. Krainer. 2000. Selection of alternative 5′; splice sites: role of U1 snRNP and models for the antagonistic effects of SF2/ASF and hnRNP A1. Mol. Cell. Biol. 20: 8303–8318.
  • Fetzer, S., J. Lauber, C. L. Will, and R. Lührmann. 1997. The [U4/U6.U5] tri-snRNP-specific 27K protein is a novel SR protein that can be phosphorylated by the snRNP-associated protein kinase. RNA 3: 344–355.
  • Fu, X.-D., and T. Maniatis. 1992. The 35-kDa mammalian splicing factor SC35 mediates specific interactions between U1 and U2 small nuclear ribonucleoprotein particles at the 3′; splice site. Proc. Natl. Acad. Sci. USA 89: 1725–1729.
  • Fu, X.-D., and T. Maniatis. 1990. Factor required for mammalian spliceosome assembly is localized to discrete regions in the nucleus. Nature 343: 437–441.
  • Gilbert, W., C. W. Siebel, and C. Guthrie. 2001. Phosphorylation by Sky1p promotes Npl3p shuttling and mRNA dissociation. RNA 7: 302–313.
  • Graveley, B. R. 2000. Sorting out the complexity of SR protein functions. RNA 6: 1197–1211.
  • Graveley, B. R., K. J. Hertel, and T. Maniatis. 2001. The role of U2AF35 and U2AF65 in enhancer-dependent splicing. RNA 7: 806–818.
  • Graveley, B. R., K. J. Hertel, and T. Maniatis. 1998. A systematic analysis of the factors that determine the strength of pre-mRNA splicing enhancers. EMBO J. 17: 6747–6756.
  • Graveley, B. R., and T. Maniatis. 1998. Arginine/serine-rich domains of SR proteins can function as activators of pre-mRNA splicing. Mol. Cell 1: 765–771.
  • Gui, J.-F., W. S. Lane, and X.-D. Fu. 1994. A serine kinase regulates intracellular localization of splicing factors in the cell cycle. Nature 369: 678–682.
  • Hannon, G. J., P. A. Maroney, J. A. Denker, and T. W. Nilsen. 1990. Trans splicing of nematode pre-messenger RNA in vitro. Cell 61: 1247–1255.
  • Hannon, G. J., P. A. Maroney, and T. W. Nilsen. 1991. U small nuclear ribonucleoprotein requirements for nematode cis and trans splicing in vitro. J. Biol. Chem. 266: 22792–22795.
  • Hertel, K. J., and T. Maniatis. 1998. The function of multisite splicing enhancers. Mol. Cell 1: 449–455.
  • Hertel, K. J., and T. Maniatis. 1999. Serine-arginine (SR)-rich splicing factors have an exon-independent function in pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 96: 2651–2655.
  • Ho, S. N., H. D. Hunt, R. M. Horton, J. K. Pullen, and L. R. Pease. 1989. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77: 51–59.
  • Kan, J. L., and M. R. Green. 1999. Pre-mRNA splicing of IgM exons M1 and M2 is directed by a juxtaposed splicing enhancer and inhibitor. Genes Dev. 13: 462–471.
  • Kanopka, A., O. Mühlemann, S. Peterson-Mahrt, C. Estmer, C. Öhrmalm, and G. Akusjärvi. 1998. Regulation of adenovirus alternative RNA splicing by dephosphorylation of SR proteins. Nature 393: 185–187.
  • Kohtz, J. D., S. F. Jamison, C. L. Will, P. Zuo, R. Lührmann, M. A. Garcia-Blanco, and J. L. Manley. 1994. Protein-protein interactions and 5′;-splice-site recognition in mammalian mRNA precursors. Nature 368: 119–124.
  • Krainer, A. R., G. C. Conway, and D. Kozak. 1990. Purification and characterization of pre-mRNA splicing factor SF2 from HeLa cells. Genes Dev. 4: 1158–1171.
  • Makarova, O. V., E. M. Makarov, and R. Lührmann. 2001. The 65 and 110 kDa SR-related proteins of the U4/U6.U5 tri-snRNP are essential for the assembly of mature spliceosomes. EMBO J. 20: 2553–2563.
  • Maroney, P. A., C. M. Romfo, and T. W. Nilsen. 2000. Functional recognition of 5′; splice site by U4/U6.U5 tri-snRNP defines a novel ATP-dependent step in early spliceosome assembly. Mol. Cell 6: 317–328.
  • Maroney, P. A., C. M. Romfo, and T. W. Nilsen. 2000. Nuclease protection of RNAs containing site-specific labels: a rapid method for mapping RNA-protein interactions. RNA 6: 1905–1909.
  • Maroney, P. A., Y.-T. Yu, M. Jankowska, and T. W. Nilsen. 1996. Direct analysis of nematode cis- and trans-spliceosomes: a functional role for U5 snRNA in spliced leader addition trans-splicing and the identification of novel Sm snRNPs. RNA 2: 735–745.
  • Mermoud, J. E., C. Calvio, and A. I. Lamond. 1994. Uncovering the role of Ser/Thr protein phosphorylation in nuclear pre-mRNA splicing. Adv. Protein Phosphatases 8: 99–118.
  • Mermoud, J. E., P. Cohen, and A. I. Lamond. 1992. Ser/Thr-specific protein phosphatases are requires for both catalytic steps of pre-mRNA splicing. Nucleic Acids Res. 20: 5263–5269.
  • Mermoud, J. E., P. T. W. Cohen, and A. I. Lamond. 1994. Regulation of mammalian spliceosome assembly by a protein phosphorylation mechanism. EMBO J. 13: 5679–5688.
  • Murray, M. V., R. Kobayashi, and A. R. Krainer. 1999. The type 2C Ser/Thr phosphatase PP2Cγ is a pre-mRNA splicing factor. Genes Dev. 13: 87–97.
  • Nilsen, T. W. 1997. Trans-splicing, p. 310–334. In A. R. Krainer (ed.), Eukaryotic mRNA processing. IRL Press, Oxford, United Kingdom.
  • Prasad, J., K. Colwill, T. Pawson, and J. L. Manley. 1999. The protein kinase Clk/Sty directly modulates SR protein activity: both hyper- and hypophosphorylation inhibit splicing. Mol. Cell. Biol. 19: 6991–7000.
  • Romfo, C. M., P. A. Maroney, S. Wu, and T. W. Nilsen. 2001. 3′; splice site recognition in nematode trans-splicing involves enhancer-dependent recruitment of U2 snRNP. RNA 7: 785–792.
  • Roscigno, R. F., and M. A. Garcia-Blanco. 1995. SR proteins escort the U4/U6.U5 tri-snRNP to the spliceosome. RNA 1: 692–706.
  • Rossi, F., E. Labourier, T. Forné, G. Divita, J. Derancourt, J. F. Riou, E. Antoine, G. Cathala, C. Brunel, and J. Tazi. 1996. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381: 80–82.
  • Sanford, J. R., and J. P. Bruzik. 1999. Developmental regulation of SR protein phosphorylation and activity. Genes Dev. 13: 1513–1518.
  • Sanford, J. R., and J. P. Bruzik. 2001. Regulation of SR protein localization during development. Proc. Natl. Acad. Sci. USA 98: 10184–10189.
  • Sanford, J. R., and J. P. Bruzik. 1999. SR proteins are required for nematode trans-splicing in vitro. RNA 5: 918–928.
  • Staknis, D., and R. Reed. 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14: 7670–7682.
  • Stark, J. M., D. P. Bazett-Jones, M. Herfort, and M. B. Roth. 1998. SR proteins are sufficient for exon bridging across an intron. Proc. Natl. Acad. Sci. USA 95: 2163–2168.
  • Tacke, R., Y. Chen, and J. L. Manley. 1997. Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc. Natl. Acad. Sci. USA 94: 1148–1153.
  • Tange, T. O., and J. Kjems. 2001. SF2/ASF binds to a splicing enhancer in the third HIV-1 tat exon and stimulates U2AF binding independently of the RS domain. J. Mol. Biol. 312: 649–662.
  • Tazi, J., M.-C. Daugeron, G. Cathala, C. Brunel, and P. Jeanteur. 1992. Adenosine phosphorothioates (ATPαS and ATPγS) differentially affect the two steps of mammalian pre-mRNA splicing. J. Biol. Chem. 267: 4322–4326.
  • Thomas, J. D., R. C. Conrad, and T. Blumenthal. 1988. The C. elegans trans-spliced leader RNA is bound to Sm and has a trimethylguanosine cap. Cell 54: 533–539.
  • Van Doren, K., and D. Hirsh. 1988. Trans-spliced leader RNA exists as small nuclear ribonucleoprotein particles in Caenorhabditis elegans. Nature 335: 556–559.
  • Wang, H.-Y., W. Lin, J. A. Dyck, J. M. Yeakley, Z. Songyang, L. C. Cantley, and X.-D. Fu. 1998. SRPK2: a differentially expressed SR protein-specific kinase involved in mediating the interaction and localization of pre-mRNA splicing factors in mammalian cells. J. Cell Biol. 140: 1–14.
  • Wu, J. Y., and T. Maniatis. 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75: 1061–1070.
  • Xiao, S.-H., and J. L. Manley. 1997. Phosphorylation of the ASF/SF2 RS domain affects both protein-protein and protein-RNA interactions and is necessary for splicing. Genes Dev. 11: 334–344.
  • Xiao, S.-H., and J. L. Manley. 1998. Phosphorylation-dephosphorylation differentially affects activities of splicing factor ASF/SF2. EMBO J. 17: 6359–6367.
  • Yu, Y.-T., P. A. Maroney, and T. W. Nilsen. 1993. Functional reconstitution of U6 snRNA in nematode cis- and trans-splicing: U6 can serve as both a branch acceptor and a 5′; exon. Cell 75: 1049–1059.
  • Yun, C. Y., and X. D. Fu. 2000. Conserved SR protein kinase functions in nuclear import and its action is counteracted by arginine methylation in Saccharomyces cerevisiae. J. Cell Biol. 150: 707–718.
  • Zahler, A. M., W. S. Lane, J. A. Stolk, and M. B. Roth. 1992. SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev. 6: 837–847.
  • Zhu, J., and A. R. Krainer. 2000. Pre-mRNA splicing in the absence of an SR protein RS domain. Genes Dev. 14: 3166–3178.
  • Zhu, J., A. Mayeda, and A. R. Krainer. 2001. Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP A1 and enhancer-bound SR proteins. Mol. Cell 8: 1351–1361.
  • Zuo, P., and T. Maniatis. 1996. The splicing factor U2AF35 mediates critical protein-protein interactions in constitutive and enhancer-dependent splicing. Genes Dev. 10: 1356–1368.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.