3
Views
15
CrossRef citations to date
0
Altmetric
Cell Growth and Development

p53 Is Necessary for the Apoptotic Response Mediated by a Transient Increase of Ras Activity

, , &
Pages 2928-2938 | Received 23 Aug 2001, Accepted 29 Jan 2002, Published online: 27 Mar 2023

REFERENCES

  • Adams, J. M., and S. Cory. 1991. Transgenic models of tumor development. Science 254: 1161–1167.
  • Ameyar, M., V. Shatrov, C. Bouquet, C. Capoulade, Z. Cai, R. Stancou, C. Badie, H. Haddada, and S. Chouaib. 1999. Adenovirus-mediated transfer of wild-type p53 gene sensitizes TNF resistant MCF7 derivatives to the cytotoxic effect of this cytokine: relationship with c-myc and Rb. Oncogene 18: 5464–5472.
  • Amundson, S. A., T. G. Myers, and A. J. Fornace, Jr. 1998. Roles for p53 in growth arrest and apoptosis: putting on the brakes after genotoxic stress. Oncogene 17: 3287–3299.
  • Arber, N., T. Sutter, M. Miyake, S. M. Kahn, V. S. Venkatraj, A. Sobrino, D. Warburton, P. R. Holt, and I. B. Weinstein. 1996. Increased expression of cyclin D1 and the Rb tumor suppressor gene in c-K-ras transformed rat enterocytes. Oncogene 12: 1903–1908.
  • Azzoli, C. G., M. Sagar, A. Wu, D. Lowry, H. Hennings, D. L. Morgan, and W. C. Weinberg. 1998. Cooperation of p53 loss of function and v-Ha-ras in transformation of mouse keratinocyte cell lines. Mol. Carcinogenesis 21: 50–61.
  • Baier-Bitterlich, G., F. Ulberall, B. Bauer, F. Fresser, G. Wachter, H. Grunicke, G. Utermann, A. Altman, and G. Baier. 1996. Protein kinase C-theta isoenzyme selective stimulation of the transcription factor complex AP-1 in T lymphocytes. Mol. Cell. Biol. 16: 1842–1850.
  • Bos, J. L. 1989. ras oncogenes in human cancer: a review. Cancer Res. 49: 4682–4689.
  • Boukamp, P., W. Peter, U. Pascheberg, S. Altmeier, C. Fasching, E. J. Stanbridge, and N. E. Fusenig. 1995. Step-wise progression in human skin carcinogenesis in vitro involves mutational inactivation of p53, ras oncogene activation and additional chromosome loss. Oncogene 11: 961–969.
  • Caelles, C., A. Heimberg, and M. Karin. 1994. p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370: 220–224.
  • Cai, Z., C. Capoulade, C. Moyret-Lalle, M. Amor-Gueret, J. Feunteun, A. K. Larsen, B. B. Paillerets, and S. Chouaib. 1997. Resistance of MCF7 human breast carcinoma cells to TNF-induced cell death is associated with loss of p53 function. Oncogene 15: 2817–2826.
  • Chen, C.-Y., and D. V. Faller. 1995. Direction of p21Ras-generated signals cell growth or apoptosis is determined by protein kinase C and Bcl-2. Oncogene 11: 1487–1498.
  • Chen, C.-Y., J. Liou, L. W. Forman, and D. V. Faller. 1998. Differential regulation of discrete apoptotic pathways by Ras. J. Biol. Chem. 273: 16700–16709.
  • Chen, C-Y., J. Liou, L. W. Forman, and D. V. Faller. 1998. Correlation of genetic instability and apoptosis in the presence of oncogenic Ki-Ras. Cell Death Diff. 5: 984–995.
  • Chen, X., J. Bargonetti, and C. Prives. 1995. p53, through p21(WAF1/CIP1), induces cyclin D1 synthesis. Cancer Res. 55: 4257–4263.
  • Clark, G. J., J. K. Westwick, and C. J. Der. 1997. p120GAP modulates Ras activation of Jun kinase and transformation. J. Biol. Chem. 272: 1677–1681.
  • Downward, J. 1997. Cell cycle: routine role for Ras. Curr. Biol. 7: 258–260.
  • Downward, J. 1998. Ras signalling and apoptosis. Curr. Opin. Genet. Dev. 8: 49–54.
  • Downward, J., J. D. Graves, P. H. Warne, S. Rayter, and D. A. Cantrell. 1990. Stimulation of p21ras upon T-cell activation. Nature 346: 719–723.
  • Filmus, J., A. I. Robles, W. Shi, M. J. Wong, L. L. Colombo, and C. J. Conti. 1994. Induction of cyclin D1 overexpression by activated ras. Oncogene 9: 3627–3633.
  • Fisher, D. E. 1994. Apoptosis in cancer therapy: crossing the threshold. Cell 78: 539–542.
  • Franza, B. R., K. Maruyama, J. I. Garrels, and H. E. Ruley. 1986. In vitro establishment is not a sufficient prerequisite for transformation by activated Ras oncogenes. Cell 44: 409–418.
  • Friedlander, P., Y. Haupt, C. Prives, and M. Oren. 1996. A mutant p53 that discriminates between p53-responsive gene cannot induce apoptosis. Mol. Cell. Biol. 16: 4961–4971.
  • Gille, H., and J. Downward. 1999. Multiple Ras effector pathways contribute to G1 cell cycle progression. J. Biol. Chem. 274: 22033–22042.
  • Gulbins, E., R. Bissonnette, A. Mahoubi, S. Martin, W. Nishioka, T. Brunner, G. Baier, G. Baier-Bitterlich, C. Byrd, F. Lang, R. Kolesnick, and D. Green. 1995. Fas-induced apoptosis is mediated via a ceramide-initiated Ras signaling pathway. Immunity 2: 341–351.
  • Johnson, L., K. Mercer, D. Greenbaum, R. T. Bronson, D. Crowley, D. A. Tuveson, and T. Jacks. 2001. Somatic activation of the K-ras oncogene causes early onset lung cancer in mice. Nature 410: 1111–1116.
  • Joneson, T., M. A. White, M. H. Wigler, and D. Bar-Sagi. 1996. Stimulation of membrane ruffling and MAP kinase activation by distinct effectors of Ras. Science 271: 810–812.
  • Khosravi-Far, R., and C. J. Der. 1994. The Ras signal transduction pathway. Cancer Metastasis Rev. 13: 67–89.
  • Ko, L. J., and C. Prives. 1996. p53: puzzle and paradigm. Genes Dev. 10: 1054–1072.
  • Lee, J. Y., Y. A. Hannun, and L. M. Obeid. 1996. Ceramide inactivates cellular protein kinase C alpha. J. Biol. Chem. 271: 13169–13174.
  • Lengauer, C., W. Kenneth, and B. Vogelstein. 1997. DNA methylation and genetic instability in colorectal cancer cells. Proc. Natl. Acad. Sci. USA 94: 2545–2550.
  • Liu, J., J. Chao, M. Jiang, S. Ng, J. J. Yen, and H. Yang-Yen. 1995. Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells. Mol. Cell. Biol. 15: 3654–3663.
  • Lowy, D. R. 1993. Function and regulation of Ras. Annu. Rev. Biochem. 62: 851–891.
  • Lu, X., S. H. Park, T. C. Thompson, and D. P. Lane. 1992. ras-induced hyperplasia occurs with mutation of p53, but activated ras and myc together can induce carcinoma without p53 mutation. Cell 70: 153–161.
  • Ludwig, R. L., S. Bates, and K. H. Vousden. 1996. Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol. Cell. Biol. 16: 4952–4960.
  • Mayo, M. W., C.-Y. Wang, P. C. Cogswell, K. S. Rogers-Graham, S. W. Lowe, C. J. Der, and A. S. Baldwin. 1997. Requirement of NFκB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278: 1812–1815.
  • Miyashita, T., S. Krajewski, M. Krajewska, H. G. Wang, H. K. Lin, D. A. Liebermann, B. Hoffman, and J. C. Reed. 1994. Tumor suppressor p53 is a regulator of bcl-2 and Bax gene expression in vitro and in vivo. Oncogene 9: 1799–1805.
  • Miyashita, T., and J. C. Reed. 1995. Tumor suppressor p53 is a direct transcriptional activator of the human Bax gene. Cell 80: 293–299.
  • Monks, C. R. F., H. Kupfer, I. Tamir, A. Barlow, and A. Kupfer. 1997. Selective modulation of protein kinase C-theta during T-cell activation. Nature 385: 83–86.
  • Oltvai, Z., C. Milliman, and S. J. Korsmeyer. 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74: 609–619.
  • Quin, R.-G., F. McCormick, and M. Symons. 1996. An essential role for Rac in Ras transformation. Nature 374: 457–459.
  • Reed, J. C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124: 1–6.
  • Ries, S., C. Biederer, D. Woods, O. Shifman, S. Shirasawa, T. Sasazuki, M. McMahon, M. Oren, and F. McCormick. 2000. Opposing effects of Ras and p53: transcriptional activation of mdm2 and induction of p19ARF. Cell 103: 321–330.
  • Rosenberg, N., and D. Baltimore. 1976. A quantitative assay for transformation of bone marrow cells by Abelson murine leukemia. J. Exp. Med. 143: 1453–1463.
  • Shaw, P., R. Bovey, S. Tardy, R. Sahli, B. Sordat, and J. Costa. 1992. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89: 4495–4499.
  • Shirasawa, S., M. Furuse, N. Yokoyama, and T. Sasazuki. 1993. Altered growth of human colon cancer lines disrupted at activated Ki-ras. Science 260: 85–88.
  • Tanaka, N., M. Ishihara, M. Kitagawa, H. Harada, T. Kimura, T. Matsuyama, M. S. Lamphier, S. Aizawa, T. W. Mak, and T. Taniguchi. 1994. Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1. Cell 77: 829–839.
  • Thome, K. C., A. Radfar, and N. Rosenberg. 1997. Mutation of Tp53 contributes to the malignant phenotype of Abelson virus-transformed lymphoid cells. J. Virol. 71: 8149–8156.
  • Tuveson, D. A., and T. Jacks. 1999. Modeling human lung cancer in mice: similarities and shortcomings. Oncogene 18: 5318–5324.
  • Unnikrishnan, I., A. Radfar, J. Jenab-Wolocott, and N. Rosenberg. 1999. p53 mediates apoptotic crisis in primary Abelson virus-transformed pre-B cells. Mol. Cell. Biol. 19: 4825–4831.
  • Vogelstein, B., and K. W. Kinzler. 1992. p53 function and dysfunction. Cell 70: 523–526.
  • Vousden, K. H. 2000. p53: death star. Cell 103: 691–694.
  • Vousden, K. H., and G. F. Vande Woude. 2000. The ins and outs of p53. Nat. Cell Biol. 2: E178–E180.
  • Weinber, R. A. 1989. Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. Cancer Res. 49: 3713–3736.
  • Whitlock, C. A., S. F. Ziegler, and O. N. Witte. 1983. Progression of the transformed phenotype in clonal lines of Abelson virus-infected lymphocytes. Mol. Cell. Biol. 3: 596–604.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.