31
Views
83
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Reduced Proliferative Capacity of Hematopoietic Stem Cells Deficient in Hoxb3 and Hoxb4

, , , , , , , , , & show all
Pages 3872-3883 | Received 04 Sep 2002, Accepted 02 Mar 2003, Published online: 27 Mar 2023

REFERENCES

  • Antonchuk, J., G. Sauvageau, and R. K. Humphries. 2001. HOXB4 overexpression mediates very rapid stem cell regeneration and competitive hematopoietic repopulation. Exp. Hematol. 29: 1125–1134.
  • Antonchuk, J., G. Sauvageau, and R. K. Humphries. 2002. HOXB4-induced expansion of adult hematopoietic stem cells ex vivo. Cell 109: 39–45.
  • Bhardwaj, G., B. Murdoch, D. Wu, D. P. Baker, K. P. Williams, K. Chadwick, L. E. Ling, F. N. Karanu, and M. Bhatia. 2001. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat. Immunol. 2: 172–180.
  • Bhatia, M., D. Bonnet, U. Kapp, J. C. Wang, B. Murdoch, and J. E. Dick. 1997. Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J. Exp. Med. 186: 619–624.
  • Bjornsson, J. M., E. Andersson, P. Lundstrom, N. Larsson, X. Xu, E. Repetowska, R. K. Humphries, and S. Karlsson. 2001. Proliferation of primitive myeloid progenitors can be reversibly induced by HOXA10. Blood 98: 3301–3308.
  • Bjürnsson, J. M., A. Brun, N. Larsson, E. Repetowska, and S. Karlsson. 2001. HoxB4 deficiency causes reduced cellularity in hematopoietic organs and diminished proliferative capacity response of primitive hematopoietic progenitors. Blood 98: 69a. (Abstract.)
  • Boulet, A. M., and M. R. Capecchi. 1996. Targeted disruption of hoxc-4 causes esophageal defects and vertebral transformations. Dev. Biol. 177: 232–249.
  • Bromleigh, V. C., and L. P. Freedman. 2000. p21 is a transcriptional target of HOXA10 in differentiating myelomonocytic cells. Genes Dev. 14: 2581–2586.
  • Brun, A., X. Fan, K. Humphries, and S. Karlsson. 2001. The effects of HoxB4 in human primitive hematopoietic progenitors are concentration dependent: high levels of HoxB4 lead to increased myeloid differentiation and a reduction in proliferative capacity. Blood 98: 66a. (Abstract.)
  • Buske, C., M. Feuring-Buske, C. Abramovich, K. Spiekermann, C. J. Eaves, L. Coulombel, G. Sauvageau, D. E. Hogge, and R. K. Humphries. 2002. Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. Blood 100: 862–868.
  • Buske, C., M. Feuring-Buske, J. Antonchuk, P. Rosten, D. E. Hogge, C. J. Eaves, and R. K. Humphries. 2001. Overexpression of HOXA10 perturbs human lymphomyelopoiesis in vitro and in vivo. Blood 97: 2286–2292.
  • Buske, C., and R. K. Humphries. 2000. Homeobox genes in leukemogenesis. Int. J. Hematol. 71: 301–308.
  • Cheng, T., N. Rodrigues, H. Shen, Y. Yang, D. Dombkowski, M. Sykes, and D. T. Scadden. 2000. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287: 1804–1808.
  • Conneally, E., J. Cashman, A. Petzer, and C. Eaves. 1997. Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc. Natl. Acad. Sci. USA 94: 9836–9841.
  • Daga, A., M. Podesta, M. C. Capra, G. Piaggio, F. Frassoni, and G. Corte. 2000. The retroviral transduction of HOXC4 into human CD34+ cells induces an in vitro expansion of clonogenic and early progenitors. Exp. Hematol. 28: 569–574.
  • DiMartino, J. F., L. Selleri, D. Traver, M. T. Firpo, J. Rhee, R. Warnke, S. O'Gorman, I. L. Weissman, and M. L. Cleary. 2001. The Hox cofactor and proto-oncogene Pbx1 is required for maintenance of definitive hematopoiesis in the fetal liver. Blood 98: 618–626.
  • Eklund, E. A., R. Kakar, and A. Jalava. 2000. HoxA10 recruits transcriptional co-repressors to the CYBB and NCF2 genes. Blood 96: 286a. (Abstract.)
  • Giannola, D. M., W. D. Shlomchik, M. Jegathesan, D. Liebowitz, C. S. Abrams, T. Kadesch, A. Dancis, and S. G. Emerson. 2000. Hematopoietic expression of HOXB4 is regulated in normal and leukemic stem cells through transcriptional activation of the HOXB4 promoter by upstream stimulating factor (USF)-1 and USF-2. J. Exp. Med. 192: 1479–1490.
  • Gould, A., A. Morrison, G. Sproat, R. A. White, and R. Krumlauf. 1997. Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev. 11: 900–913.
  • Graham, A., N. Papalopulu, J. Lorimer, J. H. McVey, E. G. Tuddenham, and R. Krumlauf. 1988. Characterization of a murine homeo box gene, Hox-2.6, related to the Drosophila Deformed gene. Genes Dev. 2: 1424–1438.
  • Gu, H., Y. R. Zou, and K. Rajewsky. 1993. Independent control of immunoglobulin switch recombination at individual switch regions evidenced through Cre-loxP-mediated gene targeting. Cell 73: 1155–1164.
  • Horan, G. S., R. Ramirez-Solis, M. S. Featherstone, D. J. Wolgemuth, A. Bradley, and R. R. Behringer. 1995. Compound mutants for the paralogous hoxa-4, hoxb-4, and hoxd-4 genes show more complete homeotic transformations and a dose-dependent increase in the number of vertebrae transformed. Genes Dev. 9: 1667–1677.
  • Izon, D. J., S. Rozenfeld, S. T. Fong, L. Komuves, C. Largman, and H. J. Lawrence. 1998. Loss of function of the homeobox gene Hoxa-9 perturbs early T-cell development and induces apoptosis in primitive thymocytes. Blood 92: 383–393.
  • Jordan, C. T., C. M. Astle, J. Zawadzki, K. Mackarehtschian, I. R. Lemischka, and D. E. Harrison. 1995. Long-term repopulating abilities of enriched fetal liver stem cells measured by competitive repopulation. Exp. Hematol. 23: 1011–1015.
  • Kappen, C. 2000. Disruption of the homeobox gene Hoxb-6 in mice results in increased numbers of early erythrocyte progenitors. Am. J. Hematol. 65: 111–118.
  • Kroon, E., J. Krosl, U. Thorsteinsdottir, S. Baban, A. M. Buchberg, and G. Sauvageau. 1998. Hoxa9 transforms primary bone marrow cells through specific collaboration with Meis1a but not Pbx1b. EMBO J. 17: 3714–3725.
  • Krosl, J., and G. Sauvageau. 2000. AP-1 complex is effector of Hox-induced cellular proliferation and transformation. Oncogene 19: 5134–5141.
  • Kulessa, H., J. Frampton, and T. Graf. 1995. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev. 9: 1250–1262.
  • Kyba, M., R. C. Perlingeiro, and G. Q. Daley. 2002. HoxB4 confers definitive lymphoid-myeloid engraftment potential on embryonic stem cell and yolk sac hematopoietic progenitors. Cell 109: 29–37.
  • Lawrence, H. J., C. D. Helgason, G. Sauvageau, S. Fong, D. J. Izon, R. K. Humphries, and C. Largman. 1997. Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. Blood 89: 1922–1930.
  • Lawrence, H. J., S. T. Fong, Y. H. Hsiang, G. Sauvageau, and R. K. Humphries. 1998. Evidence for a stem cell defect in mice with targeted interruption of the Hoxa9 homoebox gene. Blood 92: 55a. (Abstract.)
  • Luens, K. M., M. A. Travis, B. P. Chen, B. L. Hill, R. Scollay, and L. J. Murray. 1998. Thrombopoietin, kit ligand, and flk2/flt3 ligand together induce increased numbers of primitive hematopoietic progenitors from human CD34+ Thy-1+ Lin− cells with preserved ability to engraft SCID-hu bone. Blood 91: 1206–1215.
  • Manley, N. R., and M. R. Capecchi. 1997. Hox group 3 paralogous genes act synergistically in the formation of somitic and neural crest-derived structures. Dev. Biol. 192: 274–288.
  • Medina-Martinez, O., A. Bradley, and R. Ramirez-Solis. 2000. A large targeted deletion of Hoxb1-Hoxb9 produces a series of single-segment anterior homeotic transformations. Dev. Biol. 222: 71–83.
  • Morrison, A., L. Ariza-McNaughton, A. Gould, M. Featherstone, and R. Krumlauf. 1997. HOXD4 and regulation of the group 4 paralog genes. Development 124: 3135–3146.
  • Morrison, S. J., H. D. Hemmati, A. M. Wandycz, and I. L. Weissman. 1995. The purification and characterization of fetal liver hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 92: 10302–10306.
  • Ohta, H., A. Sawada, J. Y. Kim, S. Tokimasa, S. Nishiguchi, R. K. Humphries, J. Hara, and Y. Takihara. 2002. Polycomb group gene rae28 is required for sustaining activity of hematopoietic stem cells. J. Exp. Med. 195: 759–770.
  • Orkin, S. H. 2000. Diversification of haematopoietic stem cells to specific lineages. Nat. Rev. Genet. 1: 57–64.
  • Pan, Q., and R. U. Simpson. 2001. Antisense knockout of HOXB4 blocks 1,25-dihydroxyvitamin D3 inhibition of c-myc expression. J. Endocrinol. 169: 153–159.
  • Pan, Q., and R. U. Simpson. 1999. c-myc intron element-binding proteins are required for 1,25-dihydroxyvitamin D3 regulation of c-myc during HL-60 cell differentiation and the involvement of HOXB4. J. Biol. Chem. 274: 8437–8444.
  • Pinto Do, O. P., K. Richter, and L. Carlsson. 2002. Hematopoietic progenitor/stem cells immortalized by Lhx2 generate functional hematopoietic cells in vivo. Blood 99: 3939–3946.
  • Ramirez-Solis, R., H. Zheng, J. Whiting, R. Krumlauf, and A. Bradley. 1993. Hoxb-4 (Hox-2.6) mutant mice show homeotic transformation of a cervical vertebra and defects in the closure of the sternal rudiments. Cell 73: 279–294.
  • Randall, T. D., and I. L. Weissman. 1997. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 89: 3596–3606.
  • Rideout, W. M., K. Hochedlinger, M. Kyba, G. Q. Daley, and R. Jaenisch. 2002. Correction of a genetic defect by nuclear transplantation and combined cell and gene therapy. Cell 109: 17–27.
  • Rossel, M., and M. R. Capecchi. 1999. Mice mutant for both Hoxa1 and Hoxb1 show extensive remodeling of the hindbrain and defects in craniofacial development. Development 126: 5027–5040.
  • Saleh, M., I. Rambaldi, X. J. Yang, and M. S. Featherstone. 2000. Cell signaling switches HOX-PBX complexes from repressors to activators of transcription mediated by histone deacetylases and histone acetyltransferases. Mol. Cell. Biol. 20: 8623–8633.
  • Sauer, B. 1996. Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucleic Acids Res. 24: 4608–4613.
  • Sauvageau, G., P. M. Lansdorp, C. J. Eaves, D. E. Hogge, W. H. Dragowska, D. S. Reid, C. Largman, H. J. Lawrence, and R. K. Humphries. 1994. Differential expression of homeobox genes in functionally distinct CD34+ subpopulations of human bone marrow cells. Proc. Natl. Acad. Sci. USA 91: 12223–12227.
  • Sauvageau, G., U. Thorsteinsdottir, C. J. Eaves, H. J. Lawrence, C. Largman, P. M. Lansdorp, and R. K. Humphries. 1995. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev. 9: 1753–1765.
  • Sauvageau, G., U. Thorsteinsdottir, M. R. Hough, P. Hugo, H. J. Lawrence, C. Largman, and R. K. Humphries. 1997. Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. Immunity 6: 13–22.
  • Schiedlmeier, B., H. Klump, E. Will, G. Arman-Kalcek, Z. Li, Z. Wang, A. Rimek, J. Friel, C. Baum, and W. Ostertag. 2003. High-level ectopic HOXB4 expression confers a profound in vivo competitive growth advantage on human cord blood CD34+ cells, but impairs lymphomyeloid differentiation. Blood 101: 1759–1768.
  • Sharpe, J., S. Nonchev, A. Gould, J. Whiting, and R. Krumlauf. 1998. Selectivity, sharing and competitive interactions in the regulation of Hoxb genes. EMBO J. 17: 1788–1798.
  • Shen, W. F., K. Krishnan, H. J. Lawrence, and C. Largman. 2001. The HOX homeodomain proteins block CBP histone acetyltransferase activity. Mol. Cell. Biol. 21: 7509–7522.
  • Suemori, H., and S. Noguchi. 2000. Hox C cluster genes are dispensable for overall body plan of mouse embryonic development. Dev. Biol. 220: 333–342.
  • Szilvassy, S. J., and S. Cory. 1993. Phenotypic and functional characterization of competitive long-term repopulating hematopoietic stem cells enriched from 5-fluorouracil-treated murine marrow. Blood 81: 2310–2320.
  • Tenen, D. G., R. Hromas, J. D. Licht, and D. E. Zhang. 1997. Transcription factors, normal myeloid development, and leukemia. Blood 90: 489–519.
  • Thorsteinsdottir, U., A. Mamo, E. Kroon, L. Jerome, J. Bijl, H. J. Lawrence, K. Humphries, and G. Sauvageau. 2002. Overexpression of the myeloid leukemia-associated Hoxa9 gene in bone marrow cells induces stem cell expansion. Blood 99: 121–129.
  • Thorsteinsdottir, U., G. Sauvageau, M. R. Hough, W. Dragowska, P. M. Lansdorp, H. J. Lawrence, C. Largman, and R. K. Humphries. 1997. Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia. Mol. Cell. Biol. 17: 495–505.
  • Thorsteinsdottir, U., G. Sauvageau, and R. K. Humphries. 1999. Enhanced in vivo regenerative potential of HOXB4-transduced hematopoietic stem cells with regulation of their pool size. Blood 94: 2605–2612.
  • Thorsteinsdottir, U., G. Sauvageau, and R. K. Humphries. 1997. Hox homeobox genes as regulators of normal and leukemic hematopoiesis. Hematol. Oncol. Clin. N. Am. 11: 1221–1237.
  • Torres, R. M., and R. Kühn. 1997. Laboratory protocols for conditional gene targeting. Oxford University Press, Oxford, United Kingdom.
  • Varnum-Finney, B., L. Xu, C. Brashem-Stein, C. Nourigat, D. Flowers, S. Bakkour, W. S. Pear, and I. D. Bernstein. 2000. Pluripotent, cytokine-dependent, hematopoietic stem cells are immortalized by constitutive Notch1 signaling. Nat. Med. 6: 1278–1281.
  • Zakany, J., and D. Duboule. 1996. Synpolydactyly in mice with a targeted deficiency in the HoxD complex. Nature 384: 69–71.
  • Zakany, J., C. Fromental-Ramain, X. Warot, and D. Duboule. 1997. Regulation of number and size of digits by posterior Hox genes: a dose-dependent mechanism with potential evolutionary implications. Proc. Natl. Acad. Sci. USA 94: 13695–13700.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.