47
Views
134
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Mek2 Is Dispensable for Mouse Growth and Development

, , , , , , , & show all
Pages 4778-4787 | Received 10 Feb 2003, Accepted 26 Apr 2003, Published online: 27 Mar 2023

REFERENCES

  • Acharya, U., A. Mallabiabarrena, J. K. Acharya, and V. Malhotra. 1998. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 92: 183–192.
  • Alberola-Ila, J., K. A. Hogquist, K. A. Swan, M. J. Bevan, and R. M. Perlmutter. 1996. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184: 9–18.
  • Alberola-Ila, J., K. A. Forbush, R. Seger, E. G. Krebs, and R. M. Perlmutter. 1995. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373: 620–623.
  • Aubry, S., and J. Charron. 2000. N-Myc shares cellular functions with c-Myc. DNA Cell Biol. 19: 353–364.
  • Bhunia, A. K., H. Han, A. Snowden, and S. Chatterjee. 1996. Lactosylceramide stimulates Ras-GTP loading, kinases (MEK, Raf), p44 mitogen-activated protein kinase, and c-fos expression in human aortic smooth muscle cells. J. Biol. Chem. 271: 10660–10666.
  • Bommhardt, U., Y. Scheuring, C. Bickel, R. Zamoyska, and T. Hünig. 2000. MEK activity regulates negative selection of immature CD4+CD8+ thymocytes. J. Immunol. 164: 2326–2337.
  • Brott, B. K., A. Alessandrini, D. A. Largaespada, N. G. Copeland, N. A. Jenkins, C. M. Crews, and R. L. Erikson. 1993. MEK2 is a kinase related to MEK1 and is differentially expressed in murine tissues. Cell Growth Differ. 4: 921–929.
  • Catling, A. D., H.-J. Schaeffer, C. W. M. Reuter, G. R. Reddy, and M. J. Weber. 1995. A proline-rich sequence unique to MEK1 and MEK2 is required for Raf binding and regulates MEK function. Mol. Cell. Biol. 15: 5214–5225.
  • Charron, J., B. A. Malynn, P. Fisher, V. Stewart, L. Jeannotte, S. P. Goff, E. J. Robertson, and F. W. Alt. 1992. Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. Genes Dev. 6: 2248–2257.
  • Charron, J., B. A. Malynn, E. J. Robertson, S. P. Goff, and F. W. Alt. 1990. High-frequency disruption of the N-myc gene in embryonic stem and pre-B cell lines by homologous recombination. Mol. Cell. Biol. 10: 1799–1804.
  • Chen, Q., M. S. Kinch, T. H. Lin, K. Burridge, and R. L. Juliano. 1994. Integrin-mediated cell adhesion activates mitogen-activated protein kinases. J. Biol. Chem. 269: 26602–26605.
  • Cobb, M. H. 1999. MAP kinase pathways. Prog. Biophys. Mol. Biol. 71: 479–500.
  • Crews, C. M., A. Alessandrini, and R. L. Erikson. 1992. The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 258: 478–480.
  • Crompton, T., K. C. Gilmour, and M. J. Owen. 1996. The MAP kinase pathway controls differentiation from double-negative to double-positive thymocyte. Cell 86: 243–251.
  • Dang, A., J. A. Frost, and M. H. Cobb. 1998. The MEK1 proline-rich insert is required for efficient activation of the mitogen-activated protein kinases ERK1 and ERK2 in mammalian cells. J. Biol. Chem. 273: 19909–19913.
  • Eblen, S. T., J. K. Slack, M. J. Weber, and A. D. Catling. 2002. Rac-PAK signaling stimulates extracellular signal-regulated kinase (ERK) activation by regulating formation of MEK1-ERK complexes. Mol. Cell. Biol. 22: 6023–6033.
  • Fukuda, M., Y. Gotoh, and E. Nishida. 1997. Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J. 16: 1901–1908.
  • Giroux, S., M. Tremblay, D. Bernard, J. F. Cardin-Girard, S. Aubry, L. Larouche, S. Rousseau, J. Huot, J. Landry, L. Jeannotte, and J. Charron. 1999. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9: 369–372.
  • Guo, Z., G. Clydesdale, J. Cheng, K. Kim, L. Gan, D. J. McConkey, S. E. Ullrich, Y. Zhuang, and B. Su. 2002. Disruption of Mekk2 in mice reveals an unexpected role for MEKK2 in modulating T-cell receptor signal transduction. Mol. Cell. Biol 22: 5761–5768.
  • Hanks, S. K., A. M. Quinn, and T. Hunter. 1988. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241: 42–52.
  • Hsu, J. C., and N. Perrimon. 1994. A temperature-sensitive MEK mutation demonstrates the conservation of the signaling pathways activated by receptor tyrosine kinases. Genes Dev. 8: 2176–2187.
  • Ioffe, E., Y. Liu, M. Bhaumik, F. Poirier, S. M. Factor, and P. Stanley. 1995. WW6: an embryonic stem cell line with an inert genetic marker that can be traced in chimeras. Proc. Natl. Acad. Sci. USA 92: 7357–7361.
  • Janeway, C. A., A. V. Chervonsky, and D. Sant'Angelo. 1997. T-cell receptors: is the repertoire inherently MHC-specific? Curr. Biol. 7: R299–R300.
  • Jelinek, T., A. D. Catling, C. W. M. Reuter, S. A. Moodie, A. Wolfman, and M. J. Weber. 1994. RAS and RAF-1 form a signalling complex with MEK-1 but not MEK-2. Mol. Cell. Biol. 14: 8212–8218.
  • Johnson, G. L., and R. R. Vaillancourt. 1994. Sequential protein kinase reactions controlling cell growth and differentiation. Curr. Opin. Cell Biol. 6: 230–238.
  • Killeen, N., B. A. Irving, S. Pippig, and K. Zingler. 1998. Signaling checkpoints during the development of T lymphocytes. Curr. Opin. Immunol. 10: 360–367.
  • Klemke, R. L., S. Cai, A. L. Giannini, P. J. Gallagher, P. de Lanerolle, and D. A. Cheresh. 1997. Regulation of cell motility by mitogen-activated protein kinase. J. Cell Biol. 137: 481–492.
  • Kornfeld, K., K. L. Guan, and H. R. Horvitz. 1995. The Caenorhabditis elegans gene mek-2 is required for vulval induction and encodes a protein similar to the protein kinase MEK. Genes Dev. 9: 756–768.
  • Malynn, B. A., J. Demengeot, V. Stewart, J. Charron, and F. W. Alt. 1995. Generation of normal lymphocytes derived from N-myc-deficient embryonic stem cells. Int. Immunol. 7: 1637–1647.
  • Mansour, S. L., K. R. Thomas, and M. R. Capecchi. 1988. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336: 348–352.
  • Nantel, A., K. Mohammad-Ali, J. Sherk, B. I. Posner, and D. Y. Thomas. 1998. Interaction of the Grb10 adapter protein with the Raf1 and MEK1 kinases. J. Biol. Chem. 273: 10475–10484.
  • Pages, G., A. Brunet, G. L'Allemain, and J. Pouyssegur. 1994. Constitutive mutant and putative regulatory serine phosphorylation site of mammalian MAP kinase kinase (MEK1). EMBO J. 13: 3003–3010.
  • Pages, G., S. Guerin, D. Grall, F. Bonino, A. Smith, F. Anjuere, P. Auberger, and J. Pouyssegur. 1999. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286: 1374–1377.
  • Papin, C., A. Denouel, G. Calothy, and A. Eychene. 1996. Identification of signalling proteins interacting with B-Raf in the yeast two-hybrid system. Oncogene 12: 2213–2221.
  • Rodewald, H. R., and H. J. Fehling. 1998. Molecular and cellular events in early thymocyte development. Adv. Immunol. 69: 1–112.
  • Rousseau, S., F. Houle, J. Landry, and J. Huot. 1997. p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene 15: 2169–2177.
  • Russell, M., C. A. Lange-Carter, and G. L. Johnson. 1995. Regulation of recombinant MEK1 and MEK2b expressed in Escherichia coli. Biochemistry 34: 6611–6615.
  • Seger, R., and E. G. Krebs. 1995. The MAPK signaling cascade. FASEB J. 9: 726–735.
  • Setalo, G., Jr., M. Singh, X. Guan, and C. D. Toran-Allerand. 2002. Estradiol-induced phosphorylation of ERK1/2 in explants of the mouse cerebral cortex: the roles of heat shock protein 90 (Hsp90) and MEK2. J. Neurobiol. 50: 1–12.
  • Seufferlein, T., D. J. Withers, and E. Rozengurt. 1996. Reduced requirement of mitogen-activated protein kinase (MAPK) activity for entry into the S phase of the cell cycle in Swiss 3T3 fibroblasts stimulated by bombesin and insulin. J. Biol. Chem. 271: 21471–21477.
  • Umbhauer, M., C. J. Marshall, C. S. Mason, R. W. Old, and J. C. Smith. 1995. Mesoderm induction in Xenopus caused by activation of MAP kinase. Nature 376: 58–62.
  • Winston, B. W., L. K. Remigio, and D. W. Riches. 1995. Preferential involvement of MEK1 in the tumor necrosis factor-α-induced activation of p42mapk/erk2 in mouse macrophages. J. Biol. Chem. 270: 27391–27394.
  • Wu, X., S. J. Noh, G. Zhou, J. E. Dixon, and K. L. Guan. 1996. Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J. Biol. Chem. 271: 3265–3271.
  • Wu, Y., M. Han, and K. L. Guan. 1995. MEK-2, a Caenorhabditis elegans MAP kinase kinase, functions in Ras-mediated vulval induction and other developmental events. Genes Dev. 9: 742–755.
  • Zheng, C. F., and K. L. Guan. 1993. Properties of MEKs, the kinases that phosphorylate and activate the extracellular signal-regulated kinases. J. Biol. Chem. 268: 23933–23939.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.