12
Views
71
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Origin of Endogenous DNA Abasic Sites in Saccharomyces cerevisiae

&
Pages 8386-8394 | Received 21 Mar 2003, Accepted 04 Aug 2003, Published online: 27 Mar 2023

REFERENCES

  • Baldo, Angela M., and Marcella A. McClure. 1999. Evolution and horizontal transfer of dUTPase-encoding genes in viruses and their hosts. J. Virol. 73: 7710–7721.
  • Bankmann, M., L. Prakash, and S. Prakash. 1992. Yeast RAD14 and human xeroderma pigmentosum group A DNA-repair genes encode homologous proteins. Nature 355: 555–558.
  • Bennett, Richard A. O. 1999. The Saccharomyces cerevisiae ETH1 gene, an inducible homolog of exonuclease III that provides resistance to DNA-damaging agents and limits spontaneous mutagenesis. Mol. Cell. Biol. 19: 1800–1809.
  • Berdal, K. G., R. F. Johansen, and E. Seeberg. 1998. Release of normal bases from intact DNA by a native DNA repair enzyme. EMBO J. 17: 363–367.
  • Cadet, J., M. Berger, T. Douki, and J. L. Ravanat. 1997. Oxidative damage to DNA: formation, measurement, and biological significance. Rev. Physiol. Biochem. Pharmacol. 131: 1–87.
  • Chen, J., B. Derfler, A. Maskati, and L. Samson. 1989. Cloning a eukaryotic DNA glycosylase repair gene by the suppression of a DNA repair defect in Escherichia coli. Proc. Natl. Acad. Sci. USA 86: 7961–7965.
  • Demple, B., and L. Harrison. 1994. Repair of oxidative damage to DNA: enzymology and biology. Annu. Rev. Biochem. 63: 915–948.
  • Duncan, Bruce K., and Bernard Weiss. 1982. Specific mutator effects of ung (uracil-DNA glycosylase) mutations in Escherichia coli. J. Bacteriol. 151: 750–755.
  • el-Hajj, Hiyam H., Linghua Wang, and Bernard Weiss. 1992. Multiple mutant of Escherichia coli synthesizing virtually thymineless DNA during limited growth. J. Bacteriol. 174: 4450–4456.
  • Foster, Patricia L. 1990. Escherichia coli strains with multiple DNA repair defects are hyperinduced for the SOS response. J. Bacteriol. 172: 4719–4720.
  • Friedberg, E., G. Walker, and W. Siede. 1995. DNA repair and mutagenesis. ASM Press, Washington, D.C.
  • Gadsden, M. H., E. M. McIntosh, J. C. Game, P. J. Wilson, and R. H. Haynes. 1993. dUTP pyrophosphatase is an essential enzyme in Saccharomyces cerevisiae. EMBO J. 12: 4425–4431.
  • Gellon, L., R. Barbey, P. Auffret van der Kemp, D. Thomas, and S. Boiteux. 2001. Synergism between base excision repair, mediated by the DNA glycosylases Ntg1 and Ntg2, and nucleotide excision repair in the removal of oxidatively damaged DNA bases in Saccharomyces cerevisiae. Mol. Genet. Genomics 265: 1087–1096.
  • Gietz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20: 1425.
  • Guillet, M., and S. Boiteux. 2002. Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae. EMBO J. 21: 2833–2841.
  • Haracska, L., I. Unk, R. E. Johnson, E. Johansson, P. M. Burgers, S. Prakash, and L. Prakash. 2001. Roles of yeast DNA polymerases delta and zeta and of Rev1 in the bypass of abasic sites. Genes Dev. 15: 945–954.
  • Hardeland, U., M. Bentele, T. Lettieri, R. Steinacher, J. Jiricny, and P. Schar. 2001. Thymine DNA glycosylase. Prog. Nucleic Acid Res. Mol. Biol. 68: 235–253.
  • Hoeijmakers, J. H. 2001. Genome maintenance mechanisms for preventing cancer. Nature 411: 366–374.
  • Impellizzeri, Kimberly J., Blake Anderson, and Peter M. J. Burgers. 1991. The spectrum of spontaneous mutations in a Saccharomyces cerevisiae uracil-DNA-glycosylase mutant limits the function of this enzyme to cytosine deamination repair. J. Bacteriol. 173: 6807–6810.
  • Johnson, Robert E., Carlos A. Torres-Ramos, Tadahide Izumi, Sankar Mitra, Satya Prakash, and Louise Prakash. 1998. Identification of APN2, the Saccharomyces cerevisiae homolog of the major human AP endonuclease HAP1, and its role in the repair of abasic sites. Genes Dev. 12: 3137–3143.
  • Kavli, B., O. Sundheim, M. Akbari, M. Otterlei, H. Nilsen, F. Skorpen, P. A. Aas, L. Hagen, H. E. Krokan, and G. Slupphaug. 2002. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 277: 39926–39936.
  • Klungland, A., I. Rosewell, S. Hollenbach, E. Larsen, G. Daly, B. Epe, E. Seeberg, T. Lindahl, and D. E. Barnes. 1999. Accumulation of premutagenic DNA lesions in mice defective in removal of oxidative base damage. Proc. Natl. Acad. Sci. USA 96: 13300–13305.
  • Krokan, H. E., R. Standal, and G. Slupphaug. 1997. DNA glycosylases in the base excision repair of DNA. Biochem J. 325: 1–16.
  • Kuzminov, A. 2001. Single-strand interruptions in replicating chromosomes cause double-strand breaks. Proc. Natl. Acad. Sci. USA 98: 8241–8246.
  • Ladner, R. D., D. E. McNulty, S. A. Carr, G. D. Roberts, and S. J. Caradonna. 1996. Characterization of distinct nuclear and mitochondrial forms of human deoxyuridine triphosphate nucleotidohydrolase. J. Biol. Chem. 271: 7745–7751.
  • Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709–715.
  • Lindahl, T., and B. Nyberg. 1972. Rate of depurination of native deoxyribonucleic acid. Biochemistry 11: 3610–3618.
  • Lindahl, T., and R. D. Wood. 1999. Quality control by DNA repair. Science 286: 1897–1905.
  • Liu, P., A. Burdzy, and L. C. Sowers. 2002. Substrate recognition by a family of uracil-DNA glycosylases: UNG, MUG, and TDG. Chem. Res. Toxicol. 15: 1001–1009.
  • Loeb, L. A. 1985. Apurinic sites as mutagenic intermediates. Cell 40: 483–484.
  • Mumberg, D., R. Muller, and M. Funk. 1994. Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use for heterologous expression. Nucleic Acids Res. 22: 5767–5768.
  • Nagelhus, T. A., T. Haug, K. K. Singh, K. F. Keshav, F. Skorpen, M. Otterlei, S. Bharati, T. Lindmo, S. Benichou, R. Benarous, and H. E. Krokan. 1997. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J. Biol. Chem. 272: 6561–6566.
  • Nakamura, J., and J. A. Swenberg. 1999. Endogenous apurinic/apyrimidinic sites in genomic DNA of mammalian tissues. Cancer Res. 59: 2522–2526.
  • Nakamura, J., V. E. Walker, P. B. Upton, S. Y. Chiang, Y. W. Kow, and J. A. Swenberg. 1998. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 58: 222–225.
  • Neddermann, P., P. Gallinari, T. Lettieri, D. Schmid, O. Truong, J. J. Hsuan, K. Wiebauer, and J. Jiricny. 1996. Cloning and expression of human G/T mismatch-specific thymine-DNA glycosylase. J. Biol. Chem. 271: 12767–12774.
  • Nilsen, H., K. A. Haushalter, P. Robins, D. E. Barnes, G. L. Verdine, and T. Lindahl. 2001. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 20: 4278–4286.
  • Nilsen, H., M. Otterlei, T. Haug, K. Solum, T. A. Nagelhus, F. Skorpen, and H. E. Krokan. 1997. Nuclear and mitochondrial uracil-DNA glycosylases are generated by alternative splicing and transcription from different positions in the UNG gene. Nucleic Acids Res. 25: 750–755.
  • Nilsen, H., I. Rosewell, P. Robins, C. F. Skjelbred, S. Andersen, G. Slupphaug, G. Daly, H. E. Krokan, T. Lindahl, and D. E. Barnes. 2000. Uracil-DNA glycosylase (UNG)-deficient mice reveal a primary role of the enzyme during DNA replication. Mol. Cell 5: 1059–1065.
  • O'Connor, T. R., S. Boiteux, and J. Laval. 1988. Ring-opened 7-methylguanine residues in DNA are a block to in vitro DNA synthesis. Nucleic Acids Res. 16: 5879–5894.
  • Otterlei, M., E. Warbrick, T. A. Nagelhus, T. Haug, G. Slupphaug, M. Akbari, P. A. Aas, K. Steinsbekk, O. Bakke, and H. E. Krokan. 1999. Post-replicative base excision repair in replication foci. EMBO J. 18: 3834–3844.
  • Percival, K. J., M. B. Klein, and P. M. Burgers. 1989. Molecular cloning and primary structure of the uracil-DNA-glycosylase gene from Saccharomyces cerevisiae. J. Biol. Chem. 264: 2593–2598.
  • Popoff, S. C., A. I. Spira, A. W. Johnson, and B. Demple. 1990. Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc. Natl. Acad. Sci. USA 87: 4193–4197.
  • Ramotar, Dindial, Sonya C. Popoff, Edith B. Gralla, and Bruce Demple. 1991. Cellular role of yeast Apn1 apurinic endonuclease/3′-diesterase: repair of oxidative and alkylation DNA damage and control of spontaneous mutation. Mol. Cell. Biol. 11: 4537–4544.
  • Resnick, M. A., J. C. Game, and S. Stasiewicz. 1983. Genetic effects of UV irradiation on excision-proficient and -deficient yeast during meiosis. Genetics 104: 603–618.
  • Rydberg, B., and T. Lindahl. 1982. Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionine is a potentially mutagenic reaction. EMBO J. 1: 211–216.
  • Sartori, A. A., S. Fitz-Gibbon, H. Yang, J. H. Miller, and J. Jiricny. 2002. A novel uracil-DNA glycosylase with broad substrate specificity and an unusual active site. EMBO J. 21: 3182–3191.
  • Scharer, O. D., and J. Jiricny. 2001. Recent progress in the biology, chemistry and structural biology of DNA glycosylases. Bioessays 23: 270–281.
  • Senturker, S., P. Auffret van der Kemp, H. J. You, P. W. Doetsch, M. Dizdaroglu, and S. Boiteux. 1998. Substrate specificities of the Ntg1 and Ntg2 proteins of Saccharomyces cerevisiae for oxidized DNA bases are not identical. Nucleic Acids Res. 26: 5270–5276.
  • Shapiro, R., and R. S. Klein. 1966. The deamination of cytidine and cytosine by acidic buffer solutions: mutagenic implications. Biochemistry 5: 2358–2362.
  • Sherman, F., and J. Hicks. 1991. Micromanipulation and dissection of asci. Academic, San Diego, Calif.
  • Swanson, Rebecca L., Natalie J. Morey, Paul W. Doetsch, and Sue Jinks-Robertson. 1999. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19: 2929–2935.
  • Thomas, D., A. D. Scot, R. Barbey, M. Padula, and S. Boiteux. 1997. Inactivation of OGG1 increases the incidence of G. C→T. A transversions in Saccharomyces cerevisiae: evidence for endogenous oxidative damage to DNA in eukaryotic cells. Mol. Gen. Genet. 254: 171–178.
  • Toczyski, D. P., D. J. Galgoczy, and L. H. Hartwell. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90: 1097–1106.
  • Tomilin, N. V., and O. N. Aprelikova. 1989. Uracil-DNA glycosylases and DNA uracil repair. Int. Rev. Cytol. 114: 125–179.
  • Torres-Ramos, Carlos A., Robert E. Johnson, Louise Prakash, and Satya Prakash. 2000. Evidence for the involvement of nucleotide excision repair in the removal of abasic sites in yeast. Mol. Cell. Biol. 20: 3522–3528.
  • Unk, I., L. Haracska, R. E. Johnson, S. Prakash, and L. Prakash. 2000. Apurinic endonuclease activity of yeast Apn2 protein. J. Biol. Chem. 275: 22427–22434.
  • Unk, Ildiko, Lajos Haracska, Satya Prakash, and Louise Prakash. 2001. 3′-phosphodiesterase and 3′→5′ exonuclease activities of yeast Apn2 protein and requirement of these activities for repair of oxidative DNA damage. Mol. Cell. Biol. 21: 1656–1661.
  • van der Kemp, P. A., D. Thomas, R. Barbey, R. de Oliveira, and S. Boiteux. 1996. Cloning and expression in Escherichia coli of the OGG1 gene of Saccharomyces cerevisiae, which codes for a DNA glycosylase that excises 7, 8-dihydro-8-oxoguanine and 2, 6-diamino-4-hydroxy-5-N-methylformamidopyrimidine. Proc. Natl. Acad. Sci. USA 93: 5197–5202.
  • Xiao, W., B. L. Chow, M. Hanna, and P. W. Doetsch. 2001. Deletion of the MAG1 DNA glycosylase gene suppresses alkylation-induced killing and mutagenesis in yeast cells lacking AP endonucleases. Mutat. Res. 487: 137–147.
  • Yu, Sung-Lim, Sung-Kun Lee, Robert E. Johnson, Louise Prakash, and Satya Prakash. 2003. The stalling of transcription at abasic sites is highly mutagenic. Mol. Cell. Biol. 23: 382–388.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.