25
Views
206
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Disruption of the Regulatory β Subunit of Protein Kinase CK2 in Mice Leads to a Cell-Autonomous Defect and Early Embryonic Lethality

, , , , , , , & show all
Pages 908-915 | Received 05 Aug 2002, Accepted 07 Nov 2002, Published online: 27 Mar 2023

REFERENCES

  • Ahmed, K., D. A. Gerber, and C. Cochet. 2002. Joining the cell survival squad: an emerging role for protein kinase CK2. Trends Cell Biol. 12: 226–230.
  • Bidwai, A. P., J. C. Reed, and C. V. C. Glover. 1995. Cloning and disruption of CKB1, the gene encoding the 38-kDa β subunit of Saccharomyces cerevisiae casein kinase II (CKII). J. Biol. Chem. 270: 10395–10404.
  • Boldyreff, B., and O. G. Issinger. 1995. Structure of the gene encoding the murine protein kinase CK2 β subunit. Genomics 29: 253–256.
  • Boldyreff, B., and O. G. Issinger. 1997. A-Raf kinase is a new interacting partner of protein kinase CK2 β subunit. FEBS Lett. 403: 197–199.
  • Chantalat, L., D. Leroy, O. Filhol, A. Nueda, M. J. Benitez, E. M. Chambaz, C. Cochet, and O. Dideberg. 1999. Crystal structure of the human protein kinase CK2 regulatory subunit reveals its zinc finger-mediated dimerization. EMBO J. 18: 2930–2940.
  • Chen, M., D. Li, E. G. Krebs, and J. A. Cooper. 1997. The casein kinase II β subunit binds to Mos and inhibits Mos activity. Mol. Cell. Biol. 17: 1904–1912.
  • Desagher, S., A. Osen-Sand, S. Montessuit, E. Magnenat, F. Vilbois, A. Hochmann, L. Journot, B. Antonsson, and J. C. Martinou. 2001. Phosphorylation of Bid by casein kinase I and II regulates cleavage by caspase 8. Mol. Cell 8: 601–611.
  • Fraser, A. G., R. S. Kamath, P. Zipperlen, M. Martinez-Campos, M. Sohrmann, and J. Ahringer. 2000. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 408: 325–330.
  • Grein, S., K. Raymond, C. Cochet, W. Pyerin, E. M. Chambaz, and O. Filhol. 1999. Searching interaction partners of protein kinase CK2β subunit by two-hybrid screening. Mol. Cell. Biochem. 191: 105–109.
  • Gu, H., J. D. Marth, P. C. Orban, H. Mosmann, and K. Rajewski. 1994. Deletion of a DNA polymerase α gene segment in T cells using cell type-specific gene targeting. Science 265: 103–106.
  • Guerra, B., S. Siemer, B. Boldyreff, and O. G. Issinger. 1999. Protein kinase CK2: evidence for a protein kinase CK2β subunit fraction, devoid of the catalytic CK2α subunit, in mouse brain and testicles. FEBS Lett. 462: 353–357.
  • Guerra, B., and O. G. Issinger. 1999. Protein kinase CK2 and its role in cellular proliferation, development and pathology. Electrophoresis 20: 391–408.
  • Guo, C., S. Yu, A. T. Davis, H. Wang, J. E. Green, and K. Ahmed. 2001. A potential role of nuclear matrix-associated protein kinase CK2 in protection against drug-induced apoptosis in cancer cells. J. Biol. Chem. 276: 5992–5999.
  • Hagemann, C., A. Kalmes, V. Wixler, L. Wixler, T. Schuster, and U. R. Rapp. 1997. The regulatory subunit of protein kinase CK2 is a specific A-Raf activator. FEBS Lett. 403: 200–202.
  • Hakem, R., J. L. De la Pompa, C. Sirard, R. Mo, M. Woo, A. Hakem, A. Wakeham, J. Potter, A. Reitmar, F. Billia, E. Firpo, C. C. Hui, J. Roberts, J. Rossant, and T. W. Mak. 1996. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 85: 1009–1023.
  • Hériché, J. K., F. Lebrin, T. Rabilloud, D. Leroy, E. M. Chambaz, and Y. Goldberg. 1997. Regulation of protein phosphatase 2A by direct interaction with casein kinase 2α. Science 276: 952–955.
  • Hogan, B., R. Beddington, F. Costatini, and E. Lacy. 1994. Manipulating the mouse embryo: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Issinger, O. G., C. Brockel, B. Boldyreff, and J. T. Pelton. 1992. Characterization of the α and β subunits of casein kinase 2 by far-UV CD spectroscopy. Biochemistry 31: 6098–6103.
  • Jensen, H. H., M. Hjerrild, B. Guerra, M. Larsen, P. Højrup, and B. Boldyreff. 2001. Phosphorylation of the Fas associated factor FAF1 by protein kinase CK2 and identification of serines 289 and 291 as the in vitro phosphorylation sites. Int. J. Biochem. Cell Biol. 33: 577–589.
  • Kaufman, M. H. 1994. The atlas of mouse development. Academic Press, London, England.
  • Kusk, M., R. Ahmed, B. Thomsen, C. Bendixen, O. G. Issinger, and B. Boldyreff. 1999. Interactions of protein kinase CK2β subunit within the holoenzyme and with other proteins. Mol. Cell. Biochem. 191: 51–58.
  • Lakso, M., J. G. Pichel, J. R. Gorman, B. Sauer, Y. Okamoto, E. Lee, F. W. Alt, and H. Westphal. 1996. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl. Acad. Sci. USA 93: 5860–5865.
  • Luscher, B., and D. W. Lichfield. 1994. Biosynthesis of casein kinase II in lymphoid cell lines. Eur. J. Biochem. 220: 521–526.
  • Meggio, F., B. Boldyreff, O. Marin, F. Marchiori, J. W. Perich, O. G. Issinger, and L. A. Pinna. 1992. The effect of polylysine on casein-kinase-2 activity is influenced by both the structure of the protein/peptide substrates and the subunit composition of the enzyme. Eur. J. Biochem. 205: 939–945.
  • Meggio, F., B. Boldyreff, O. G. Issinger, and L. A. Pinna. 1994. Casein kinase 2 down-regulation and activation by polybasic peptides are mediated by acidic residues in the 55-64 region of the β-subunit. A study with calmodulin as phosphorylatable substrate. Biochemistry 33: 4336–4342.
  • Morgenstern, J. P., and H. Land. 1990. Advanced mammalian gene transfer: high titer retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res. 18: 3587–3596.
  • Mortensen, R. M., D. A. Conner, S. Chao, A. A. T. Geisterfer-Lowrance, and J. G. Seidman. 1992. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12: 2391–2395.
  • Niefind., K., B. Guerra, I. Ermakowa, and O. G. Issinger. 2001. Crystal structure of human protein kinase CK2: insights into basic properties of the CK2 holoenzyme. EMBO J. 20: 5320–5331.
  • Padmanabha, R., J. L. Chen-Wu, D. E. Hanna, and C. V. Glover. 1990. Isolation, sequencing and disruption of the yeast CKA2 gene, casein kinase II is essential for viability in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 4089–4099.
  • Pear, W. S., G. P. Nolan, M. L. Scott, and D. Baltimore. 1993. Production of helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90: 8392–8396.
  • Pepperkok, R., P. Lorenz, R. Jakobi, W. Ansorge, and W. Pyerin. 1991. Cell growth stimulation by EGF: inhibition through antisense-oligodeoxynucleotides demonstrates important role of casein kinase II. Exp. Cell Res. 197: 245–253.
  • Pepperkok, R., P. Lorenz, W. Ansorge, and W. Pyerin. 1994. Casein kinase II is required for transition of G0/G1, early G1, and G1/S phases of the cell cycle. J. Biol. Chem. 269: 6986–6991.
  • Pinna, L. A., and F. Meggio. 1997. Protein kinase CK2 (“casein kinase-2”) and its implication in cell division and proliferation. Prog. Cell Cycle Res. 3: 77–97.
  • Roussou, I., and G. Draetta. 1994. The Schizosaccharomyces pombe casein kinase II α and β subunits: evolutionary conservation and positive role of the β subunit. Mol. Cell. Biol. 14: 576–586.
  • Snow, M. H. L. 1977. Gastrulation in the mouse: growth and regionalization of the epiblast. J. Embryol. Exp. Morphol. 42: 293–303.
  • Toczyski, D. P., D. J. Galgoczy, and L. H. Hartwell. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90: 1097–1106.
  • Vittet, D., T. Buchou, A. Schweitzer, E. Dejana, and P. Huber. 1997. Targeted null-mutation in the vascular endothelial-cadherin gene impairs the organization of vascular-like structures in embryonic bodies. Proc. Natl. Acad. Sci. USA 94: 6273–6278.
  • Xu, X., A. P. Toselli, L. D. Russell, and D. C. Seldin. 1999. Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nat. Genet. 23: 118–121.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.