22
Views
39
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Biphasic Activation of Aurora-A Kinase during the Meiosis I- Meiosis II Transition in Xenopus Oocytes

, &
Pages 1703-1716 | Received 04 Sep 2002, Accepted 09 Dec 2002, Published online: 27 Mar 2023

REFERENCES

  • Andresson, T., and J. V. Ruderman. 1998. The kinase Eg2 is a component of the Xenopus oocyte progesterone-activated signalling pathway. EMBO J. 17: 5627–5637.
  • Aronheim, A., D. Engelberg, N. Li, N. Al-Alawi, J. Schlessinger, and M. Karin. 1994. Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78: 949–961.
  • Aronheim, A., E. Zandi, H. Hennemann, S. J. Elledge, and M. Karin. 1997. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol. Cell. Biol. 17: 3092–3102.
  • Bayaa, M., R. A. Booth, Y. Sheng, and X. J. Liu. 2000. The classical progesterone receptor mediates Xenopus oocyte maturation through a nongenomic mechanism. Proc. Natl. Acad. Sci. USA 97: 12607–12612.
  • Birchmeier, C., D. Broek, and M. Wigler. 1985. Ras proteins can induce meiosis in Xenopus oocytes. Cell 43: 615–621.
  • Bischoff, J. R., and G. D. Plowman. 1999. The aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol. 9: 454–459.
  • Davis, D., and S. E. Sadler. 1992. Analysis of the p21 ras system during the development of meiotic competence in Xenopus laevis oocytes. Dev. Biol. 149: 1–7.
  • Elinson, R. P. 1985. Changes in levels of polymeric tubulin associated with activation and dorsoventral polarization of the frog egg. Dev. Biol. 109: 224–233.
  • Farruggio, D. C., F. M. Townsley, and J. V. Ruderman. 1999. Cdc20 associates with the kinase aurora2/Aik. Proc. Natl. Acad. Sci. USA 96: 7306–7311.
  • Ferrell, J. E. 2002. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14: 140–148.
  • Ferrell, J. E. Jr., and E. M. Machleder. 1998. The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. Science 280: 895–898.
  • Francisco, L., W. Wang, and C. S. M. Chan. 1994. Type 1 protein phosphatase acts in opposition to Ipl1 protein kinase in regulating yeast chromosome segregation. Mol. Cell. Biol. 14: 4731–4740.
  • Frank-Vaillant, M., O. Haccard, C. Thibier, R. Ozon, Y. Arlot-Bonnemains, C. Prigent, and C. Jessus. 2000. Progesterone regulates the accumulation and the activation of Eg2 kinase in Xenopus oocytes. J. Cell Sci. 113: 1127–1138.
  • Furuno, N., M. Nishizawa, K. Okazaki, H. Tanaka, J. Iwashita, N. Nakajo, Y. Ogawa, and N. Sagata. 1994. Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. EMBO J. 13: 2399–2410.
  • Gard, D. L. 1992. Microtubule organization during maturation of Xenopus oocytes: assembly and rotation of the meiotic spindle. Dev. Biol. 151: 516–530.
  • Gawantka, V., H. Ellinger-Ziegelbauer, and P. Hausen. 1992. 1-integrin is a material that is inserted into all newly formed plasma membrane during early Xenopus embryogenesis. Development 115: 595–605.
  • Gerhart, J., M. Wu, and M. Kirschner. 1984. Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs. J. Cell Biol. 98: 1247–1255.
  • Giet, R., and C. Prigent. 1999. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine/threonine kinases. J. Cell Sci. 112: 3591–3601.
  • Glover, D. M., M. H. Leibowitz, D. A. McLean, and H. Parry. 1995. Mutations in aurora prevent centrosome separation leading the formation of monopolar spindles. Cell 81: 95–105.
  • Groisman, I., Y. S. Huang, R. Mendez, Q. Cao, W. Theurkauf, and J. D. Richter. 2000. CPEB, maskin, and cyclin B1 mRNA at the mitotic apparatus: implications for local translational control of cell division. Cell 103: 435–447.
  • Gross, S. D., M. S. Schwab, F. E. Taieb, A. L. Lewellyn, Y. W. Qian, and J. L. Maller. 2000. The critical role of the MAP kinase pathway in meiosis II in Xenopus oocytes is mediated by p90Rsk. Curr. Biol. 10: 430–438.
  • Guan, K., and J. E. Dixon. 1991. Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192: 262–267.
  • Hannak, E., M. Kirkham, A. A. Hyman, and K. Oegema. 2001. Aurora-A kinase is required for centrosome maturation in Caenorhabditis elegans. J. Cell Biol. 155: 1109–1116.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hodgman, R., J. Tay, R. Mendez, and J. D. Richter. 2001. CPEB phosphorylation and cytoplasmic polyadenylation are catalyzed by the kinase IAK1/Eg2 in maturing mouse oocytes. Development 128: 2815–2822.
  • Huang, C. Y., and J. E. Ferrell, Jr. 1996. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93: 10078–10083.
  • Mattingly, R. R., and I. Macara. 1996. Phosphorylation-dependent activation of the Ras-GRF/CDC25Mm exchange factor by muscarinic receptor and G-protein βgamma subunits. Nature 382: 268–272.
  • Meijer, L., A. Borgne, O. Mulner, J. P. Chong, J. J. Blow, N. Inagaki, M. Inagaki, J. G. Delcros, and J. P. Moulinoux. 1997. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243: 527–536.
  • Mendez, R., D. Barnard, and J. D. Richter. 2002. Differential mRNA translation and meiotic progression require Cdc2-mediated CPEB destruction. EMBO J. 21: 1833–1844.
  • Mendez, R., L. E. Hake, T. Andresson, L. E. Littlepage, J. V. Ruderman, and J. D. Richter. 2000. Phosphorylation of CPE binding factor by Eg2 regulates translation of c-mos mRNA. Nature 404: 302–307.
  • Mendez, R., K. G. K. Murthy, K. Ryan, J. L. Manley, and J. D. Richter. 2000. Phosphorylation of CPEB by Eg2 mediates the recruitment of CPSF into an active cytoplasmic polyadenylation complex. Mol. Cell 6: 1253–1259.
  • Mochizuki, N., S. Yamashita, K. Kurokawa, Y. Ohba, T. Nagai, A. Miyawaki, and M. Matsuda. 2001. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411: 1065–1068.
  • Mora, S., P. Kaliman, J. Chillaron, X. Testar, M. Palacin, and A. Zorzano. 1995. Insulin and insulin-like growth factor 1 (IGF-1) stimulate GLUT4 glucose transporter translocation in Xenopus oocytes. Biochem. J. 311: 59–65.
  • Nebreda, A. R., and T. Hunt. 1993. The c-mos proto-oncogene protein kinase turns on and maintains the activity of MAP kinase, but not MPF, in cell-free extracts of Xenopus oocytes and eggs. EMBO J. 12: 1979–1986.
  • Nigg, E. A. 2001. Mitotic kinases as regulators of cell division and its checkpoints. Nat. Rev. Mol. Cell. Biol. 2: 21–32.
  • Ohan, N., Y. Agazie, C. Cummings, R. Booth, M. Bayaa, and X. J. Liu. 1999. Rho-associated protein kinase α potentiates insulin-induced MAP kinase activation in Xenopus oocytes. J. Cell Sci. 112: 2177–2184.
  • Peter, M., A. Castro, T. Lorca, C. Le Peuch, L. Magnaghi-Jaulin, M. Doree, and J. C. Labbe. 2001. The APC is dispensable for first meiotic anaphase in Xenopus oocytes. Nat. Cell Biol. 3: 83–87.
  • Peter, M., J. C. Labbe, M. Doree, and E. Mandart. 2002. A new role for Mos in Xenopus oocyte maturation: targeting Myt1 independently of MAPK. Development 129: 2129–2139.
  • Posada, J., and J. A. Cooper. 1992. Requirements for phosphorylation of MAP kinase during meiosis in Xenopus oocytes. Science 255: 212–215.
  • Powers, S., K. O'Neill, and M. Wigler. 1989. Dominant yeast and mammalian RAS mutations that interfere with the CDC25-dependent activation of wild-type RAS in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 390–395.
  • Raff, J. W., K. Jeffers, and J. Y. Huang. 2002. The roles of Fzy/Cdc20 and Fzr/Cdh1 in regulating the destruction of cyclin B in space and time. J. Cell Biol. 157: 1139–1149.
  • Reverte, C. G., M. D. Ahearn, and L. E. Hake. 2001. CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev. Biol. 231: 447–458.
  • Roghi, C., R. Giet, R. Uzbekov, N. Morin, I. Chartrain, R. Le Guellec, A. Couturier, M. Doree, M. Philippe, and C. Prigent. 1998. The Xenopus protein kinase pEg2 associates with the centrosome in a cell cycle-dependent manner, binds to the spindle microtubules and is involved in bipolar mitotic spindle assembly. J. Cell Sci. 111: 557–572.
  • Schmitt, A., and A. R. Nebreda. 2002. Signalling pathways in oocyte meiotic maturation. J. Cell Sci. 115: 2457–2459.
  • Schumacher, J. M., N. Ashcroft, P. J. Donovan, and A. Golden. 1998. A highly conserved centrosomal kinase, AIR-1, is required for accurate cell cycle progression and segregation of developmental factors in Caenorhabditis elegans embryos. Development 125: 4391–4402.
  • Schumacher, J. M., A. Golden, and P. J. Donovan. 1998. AIR-2: an aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J. Cell Biol. 143: 1635–1646.
  • Schwab, M. S., B. T. Roberts, S. D. Gross, B. J. Tunguist, F. E. Taieb, A. L. Lewellyn, and J. L. Maller. 2001. Bubi is activated by the protein kinase p90Rsk during Xenopus oocyte maturation. Curr. Biol. 11: 141–150.
  • Shou, C., C. L. Farnsworth, B. G. Neel, and L. A. Feig. 1992. Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21. Nature 358: 351–354.
  • Songyang, Z., K. P. Lu, Y. T. Kwon, L.-H. Tsai, O. Filhol, C. Cochet, D. A. Brickey, T. R. Soderling, C. Bartleson, D. J. Graves, A. J. DeMaggio, M. F. Hoekstra, J. Blenis, T. Hunter, and L. C. Cantley. 1996. A structural basis for substrate specificities of protein Ser/Thr kinases: primary sequence preference of casein kinase I and II, NIMA, phosphorylase kinase, calmodulin-dependent kinase II, CDK5, and Erk1. Mol. Cell. Biol. 16: 6486–6493.
  • Taieb, F. E., S. D. Gross, A. L. Lewellyn, and J. L. Maller. 2001. Activation of the anaphase-promoting complex and degradation of cyclin B is not required for progression from Meiosis I to II in Xenopus oocytes. Curr. Biol. 11: 508–513.
  • Turner, D. L., and H. Weintraub. 1994. Expression of achaete-scute homology 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8: 1434–1447.
  • Vallette, F., E. Mege, A. Reiss, and M. Adesnik. 1989. Construction of mutant and chimeric genes using the polymerase chain reaction. Nucleic Acids Res. 17: 723–733.
  • Vojtek, A. B., S. M. Hollenberg, and J. A. Cooper. 1993. Mammalian Ras interacts directly with serine/threonine kinase Raf. Cell 74: 205–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.