4
Views
14
CrossRef citations to date
0
Altmetric
Nucleocytoplasmic Communication

Karyopherin-Mediated Nuclear Import of the Homing Endonuclease VMA1-Derived Endonuclease Is Required for Self-Propagation of the Coding Region

, , &
Pages 1726-1736 | Received 22 Aug 2002, Accepted 20 Nov 2002, Published online: 27 Mar 2023

REFERENCES

  • Beck, T., and M. N. Hall. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402: 689–692.
  • Bertram, P. G., J. H. Choi, J. Carvalho, W. Ai, T.-F. Chan, and X. F. Zheng. 2000. Tripartite regulation of Gln3p by TOR, Ure2p, and phosphatases. J. Biol. Chem. 275: 35727–35733.
  • Blondel, M., P. M. Alepuz, S. Huang, G. Ammerer, and M. Peter. 1999. Nuclear export of Far1p in response to pheromones requires the export receptor Msn5p/Ste21p. Genes Dev. 13: 2284–2300.
  • Bremer, M. C., F. S. Gimble, J. Thorner, and C. L. Smith. 1992. VDE endonuclease cleaves Saccharomyces cerevisiae genomic DNA at a single site: physical mapping of the VMA1 gene. Nucleic Acids Res. 20: 5484.
  • Carvalho, J., P. G. Bertram, S. R. Wente, and X. F. S. Zheng. 2001. Phosphorylation regulates the interaction between Gln3p and the nuclear import factor Srp1p. J. Biol. Chem. 276: 25359–25365.
  • Chook, Y. M., and G. Blobel. 2001. Karyopherins and nuclear import. Curr. Opin. Struct. Biol. 11: 703–715.
  • Clyman, J., and M. Belfort. 1996. Trans and cis requirements for intron mobility in prokaryotic system. Genes Dev. 6: 1269–1279.
  • Colleaux, L., L. d'Auriol, M. Betermier, G. Cottarel, A. Jacquier, F. Galibert, and B. Dujon. 1986. Universal code equivalent of a yeast mitochondrial intron reading frame is expressed into E. coli as a specific double strand endonuclease. Cell 44: 521–533.
  • Colomina, N., E. Garí, C. Gallego, E. Herrero, and M. Aldea. 1999. G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. EMBO J. 18: 320–329.
  • De Vit, M. J., and M. Johnson. 1999. The nuclear exportin Msn5p is required for nuclear export of the Mig1 glucose repressor of Saccharomyces cerevisiae. Curr. Biol. 9: 1231–1241.
  • Enenkel, C., G. Blobel, and M. Rexach. 1995. Identification of a yeast karyopherin heterodimer that targets import substrate to mammalian nuclear pore complexes. J. Biol. Chem. 270: 16499–16502.
  • Freese, E. B., M. I. Chu, and E. Freese. 1982. Initiation of yeast sporulation by partial carbon, nitrogen, or phosphate deprivation. J. Bacteriol. 149: 840–851.
  • Gimble, F. S. 2000. Invasion of a multitude of genetic niches by mobile endonuclease. FEMS Microbiol. Lett. 185: 99–107.
  • Gimble, F. S., and J. Thorner. 1992. Homing of a DNA endonuclease gene by meiotic gene conversion in Saccharomyces cerevisiae. Nature 357: 301–306.
  • Gorlich, D., and U. Kutay. 1999. Transport between the cell nucleus and the cytoplasm. Annu. Rev. Cell Dev. Biol. 15: 607–660.
  • Gürner, W., E. Durchschlag, M. T. Martinez-Pastor, F. Estruch, G. Ammerer, B. Hamilton, H. Luis, and C. Schüller. 1998. Nuclear localization of C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev. 12: 586–597.
  • Guarente, L. 1983. Yeast promoters and lacZ fusions designed to study expression of cloned genes in yeast. Methods Enzymol. 101: 181–191.
  • Heitman, J., N. R. Movva, and M. N. Hall. 1991. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909.
  • Hirata, R., Y. Ohsumi, A. Nakano, H. Kawasaki, K. Suzuki, and Y. Anraku. 1990. Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae. J. Biol. Chem. 265: 6726–6733.
  • Hood, J. K., and P. A. Silver. 1999. In or out? Regulating nuclear transport. Curr. Opin. Cell Biol. 11: 241–247.
  • Jurica, M. S., and B. L. Stoddard. 1999. Homing endonuclease: structure function and evolution. Cell. Mol. Life Sci. 55: 1304–1326.
  • Kaffman, A., N. M. Rank, E. M. O'Neill, L. S. Huang, and E. K. O'Shea. 1998. The receptor Msn5 exports the phosphorylated transcription factor Pho4 out of the nucleus. Nature 396: 482–486.
  • Kaiser, C., S. Michaelis, and A. Mitchell. 1994. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Kalderon, D., B. L. Roberts, W. D. Rychardson, and A. E. Smith. 1984. A short amino acid sequence able to specify nuclear location. Cell 39: 499–509.
  • Kane, P. M., C. T. Yamashiro, D. F. Wolczyk, N. Neff, M. Goebl, and T. H. Stevens. 1990. Protein splicing converts the yeast TFP1 gene product to the 69-kDa subunit of the vacuolar H+-adenosine triphosphatase. Science 250: 651–657.
  • Lambowitz, A. M., and M. Belfort. 1993. Introns as mobile genetic elements. Annu. Rev. Biochem. 62: 587–622.
  • Lanford, R. E., and J. S. Butel. 1985. Replicative functions of the si,iam virus 40(cT)-3 mutant defective for nuclear transport of T antigen. Virology 147: 72–80.
  • Mahanty, S. K., Y. Wang, F. W. Farley, and E. A. Elion. 1999. Nuclear shuttling of yeast scaffold Ste5 is required for its recruitment to the plasma membrane and activation of the mating MAPK cascade. Cell 98: 501–512.
  • Mueller, J. E., J. Clyman, Y. Huang, M. M. Parker, and M. Belfort. 1996. Intron mobility in phase T4 occurs in the context of recombination-dependent DNA replication by way of multiple pathways. Genes Dev. 10: 351–364.
  • Nakagawa, K., N. Morishima, and T. Shibata. 1992. An endonuclease with multiple cutting sites, endo.SceI, initiates genetic recombination at its cutting site in yeast mitochondria. EMBO J. 11: 2707–2715.
  • Nelson, M., and P. Silver. 1989. Context affects nuclear protein localization in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 384–389.
  • Nogami, S., T. Fukuda, Y. Nagai, S. Yabe, M. Sugiura, R. Mizutani, Y. Satow, Y. Anraku, and Y. Ohya. 2002. Homing at an extragenic locus mediated by VDE (PI-SceI) in Saccharomyces cerevisiae. Yeast 19: 773–782.
  • Ohno, M., M. Fornerod, and I. W. Mattaj. 1998. Nucleocytoplasmic transport: the last 200 nanometers. Cell 92: 327–336.
  • Ohta, K., A. Nicolas, M. Furuse, A. Nabetani, H. Ogawa, and T. Shibata. 1998. Mutations in the MRE11, RAD50, XRS2, and MRE2 genes alter chromatin configuration at meiotic DNA double-stranded break sites in premeiotic and meiotic cells. Proc. Natl. Acad. Sci. USA 95: 646–651.
  • Ozaki, K., K. Tanaka, H. Imamura, T. Hihara, T. Kameyama, H. Nonaka, H. Hirano, Y. Matsuura, and Y. Takai. 1996. Rom1p and Rom2p are GDP/GTP exchange proteins (GEPs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae. EMBO J. 15: 2196–2207.
  • Perler, F. B., E. O. Davis, G. E. Dean, F. S. Gimble, W. E. Jack, N. Neff, C. J. Noren, J. Thorner, and M. Belfort. 1994. Protein splicing elements: inteins and exteins-a definition of terms and recommended nomenclature. Nucleic Acids Res. 22: 1125–1127.
  • Pringle, J., R. A. Preston, A. E. Adams, T. Stearns, D. G. Drubin, B. K. Haarer, and E. W. Jones. 1989. Fluorescence microscopy methods in yeast. Methods Cell Biol. 31: 357–435.
  • Rohde, J., J. Heitman, and M. E. Cardenas. 2001. The Tor kinases link nutrient sensing to cell growth. J. Biol. Chem. 276: 9583–9586.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schmelzle, T., and M. N. Hall. 2000. TOR, a central controller of cell growth. Cell 103: 253–262.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vector and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
  • Stanbrough, M., D. W. Rowen, and B. Magasanik. 1995. Role of the GATA factors Gln3p and Nil1p of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes. Proc. Natl. Acad. Sci. USA 92: 9450–9454.
  • Wenzlau, J. M., R. J. Saldanha, R. A. Butow, and P. S. Perlman. 1989. A latent intron-encoded maturase is also an endonuclease needed for intron mobility. Cell. 56: 421–430.
  • Wiickner, R. B. 1994. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264: 566–569.
  • Winzeler, E. A., D. D. Shoemaker, A. Astromoff, H. Liang, K. Anderson, B., Andre, R., Bangham, R., Benito, J. D. Boeke, H. Bussey, A. M. Chu, C. Connelly, K. Davis, F. Dietrich, S. W. Dow, M. El Bakkoury, F. Foury, S. H. Friend, E. Gentalen, G. Giaever, J. H. Hegemann, T. Jones, M. Laub, H. Liao, R. W. Davis, et al. 1999. Functional characterization of the Saccharomyces cerevisiae genome by gene disruption and parallel analysis. Science 285: 793–972.
  • Yano, R., M. L. Oakes, M. M. Tabb, and M. Nomura. 1994. Yeast Srp1p has homology to armadillo/plakoglobin/B-catenin and participates in apparently multiple functions including the maintenance of nucleolar structure. Proc. Natl. Acad. Sci. USA 91: 6880–6884.
  • Yano, R., M. L. Oakes, M. Yamaghishi, J. A. Dodd, and M. Nomura. 1992. Cloning and characterization of SRP1, a suppressor of temperature-sensitive RNA polymerase I mutations in Saccharomyces cerevisiae. Mol. Cell. Biol. 12: 5640–5651.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.