19
Views
149
CrossRef citations to date
0
Altmetric
Gene Expression

Promoter-Dependent Mechanism Leading to Selective Hypomethylation within the 5′ Region of Gene MAGE-A1 in Tumor Cells

, &
Pages 4781-4790 | Received 23 Dec 2003, Accepted 14 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Antequera, F., Boyes J., and Bird A.. 1990. High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514.
  • Baylin, S. B., Herman J. G., Graff J. R., Vertino P. M., and Issa J. P.. 1998. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv. Cancer Res. 72:141–196.
  • Bird, A. 2002. DNA methylation patterns and epigenetic memory. Genes Dev. 16:6–21.
  • Brandeis, M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., Razin A., and Cedar H.. 1994. Sp1 elements protect a CpG island from de novo methylation. Nature 371:435–438.
  • Brasseur, F., Rimoldi D., Lienard D., Lethe B., Carrel S., Arienti F., Suter L., Vanwijck R., Bourlond A., Humblet Y., et al. 1995. Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int. J. Cancer 63:375–380.
  • Chesnokov, I. N., and Schmid C. W.. 1995. Specific Alu binding protein from human sperm chromatin prevents DNA methylation. J. Biol. Chem. 270:18539–18542.
  • Coral, S., Sigalotti L., Altomonte M., Engelsberg A., Colizzi F., Cattarossi I., Maraskovsky E., Jager E., Seliger B., and Maio M.. 2002. 5-aza-2′-deoxycytidine-induced expression of functional cancer testis antigens in human renal cell carcinoma: immunotherapeutic implications. Clin Cancer Res. 8:2690–2695.
  • Costello, J. F., Fruhwald M. C., Smiraglia D. J., Rush L. J., Robertson G. P., Gao X., Wright F. A., Feramisco J. D., Peltomaki P., Lang J. C., Schuller D. E., Yu L., Bloomfield C. D., Caligiuri M. A., Yates A., Nishikawa R., Su Huang H., Petrelli N. J., Zhang X., O'Dorisio M. S., Held W. A., Cavenee W. K., and Plass C.. 2000. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat. Genet. 24:132–138.
  • Daniels, R., Lowell S., Bolton V., and Monk M.. 1997. Transcription of tissue-specific genes in human preimplantation embryos. Hum. Reprod. 12:2251–2256.
  • De Plaen, E., Arden K., Traversari C., Gaforio J. J., Szikora J. P., De Smet C., Brasseur F., van der Bruggen P., Lethe B., Lurquin C., et al. 1994. Structure, chromosomal localization, and expression of 12 genes of the MAGE family. Immunogenetics 40:360–369.
  • De Smet, C., Courtois S. J., Faraoni I., Lurquin C., Szikora J. P., De Backer O., and Boon T.. 1995. Involvement of two Ets binding sites in the transcriptional activation of the MAGE1 gene. Immunogenetics 42:282–290.
  • De Smet, C., De Backer O., Faraoni I., Lurquin C., Brasseur F., and Boon T.. 1996. The activation of human gene MAGE-1 in tumor cells is correlated with genome-wide demethylation. Proc. Natl. Acad. Sci. USA 93:7149–7153.
  • De Smet, C., Lurquin C., Lethe B., Martelange V., and Boon T.. 1999. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell. Biol. 19:7327–7335.
  • De Smet, C., Lurquin C., van der Bruggen P., De Plaen E., Brasseur F., and Boon T.. 1994. Sequence and expression pattern of the human MAGE2 gene. Immunogenetics 39:121–129.
  • Ehrlich, M. 2002. DNA methylation in cancer: too much, but also too little. Oncogene 21:5400–5413.
  • Ehrlich, M., Jiang G., Fiala E., Dome J. S., Yu M. C., Long T. I., Youn B., Sohn O. S., Widschwendter M., Tomlinson G. E., Chintagumpala M., Champagne M., Parham D., Liang G., Malik K., and Laird P. W.. 2002. Hypomethylation and hypermethylation of DNA in Wilms tumors. Oncogene 21:6694–6702.
  • Feinberg, A. P., and Tycko B.. 2004. The history of cancer epigenetics. Nat. Rev. Cancer 4:143–153.
  • Feinberg, A. P., and Vogelstein B.. 1983. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92.
  • Feinberg, A. P., and Vogelstein B.. 1983. Hypomethylation of ras oncogenes in primary human cancers. Biochem. Biophys. Res. Commun. 111:47–54.
  • Ferguson-Smith, A. C., and Surani M. A.. 2001. Imprinting and the epigenetic asymmetry between parental genomes. Science 293:1086–1089.
  • Gama-Sosa, M. A., Slagel V. A., Trewyn R. W., Oxenhandler R., Kuo K. C., Gehrke C. W., and Ehrlich M.. 1983. The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res. 11:6883–6894.
  • Gaudet, F., Hodgson J. G., Eden A., Jackson-Grusby L., Dausman J., Gray J. W., Leonhardt H., and Jaenisch R.. 2003. Induction of tumors in mice by genomic hypomethylation. Science 300:489–492.
  • Hellmann-Blumberg, U., Hintz M. F., Gatewood J. M., and Schmid C. W.. 1993. Developmental differences in methylation of human Alu repeats. Mol. Cell Biol. 13:4523–4530.
  • Jackson-Grusby, L., Beard C., Possemato R., Tudor M., Fambrough D., Csankovszki G., Dausman J., Lee P., Wilson C., Lander E., and Jaenisch R.. 2001. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat. Genet. 27:31–39.
  • Janssen, B. L., van de Locht L. T., Fourkour A., de Smet C., Mensink E. J., van Muijen G. N., and de Vries T. J.. 1999. Transcription of the MAGE-1 gene and the methylation status of its Ets binding promoter elements: a quantitative analysis in melanoma cell lines using a real-time polymerase chain reaction technique. Melanoma Res. 9:213–222.
  • Kafri, T., Ariel M., Brandeis M., Shemer R., Urven L., McCarrey J., Cedar H., and Razin A.. 1992. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 6:705–714.
  • Kirillov, A., Kistler B., Mostoslavsky R., Cedar H., Wirth T., and Bergman Y.. 1996. A role for nuclear NF-kappaB in B-cell-specific demethylation of the Igκ locus. Nat. Genet. 13:435–441.
  • Lin, I. G., Tomzynski T. J., Ou Q., and Hsieh C. L.. 2000. Modulation of DNA binding protein affinity directly affects target site demethylation. Mol. Cell. Biol. 20:2343–2349.
  • Loriot, A., Boon T., and De Smet C.. 2003. Five new human cancer-germline genes identified among 12 genes expressed in spermatogonia. Int. J. Cancer 105:371–376.
  • Lukyanov, D. V., Urusova M. E., Shcherba K. M., and Podgornaya O. I.. 2000. Alu-DNA repeat-binding protein p68 is a part of Alu-RNA containing alpha-RNP. Eur. J. Biochem. 267:2362–2371.
  • Macleod, D., Ali R. R., and Bird A.. 1998. An alternative promoter in the mouse major histocompatibility complex class II I-Aβ gene: implications for the origin of CpG islands. Mol. Cell. Biol. 18:4433–4443.
  • Macleod, D., Charlton J., Mullins J., and Bird A. P.. 1994. Sp1 sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev. 8:2282–2292.
  • Monk, M., Boubelik M., and Lehnert S.. 1987. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–382.
  • Mutskov, V. J., Farrell C. M., Wade P. A., Wolffe A. P., and Felsenfeld G.. 2002. The barrier function of an insulator couples high histone acetylation levels with specific protection of promoter DNA from methylation. Genes Dev. 16:1540–1554.
  • Narayan, A., Ji W., Zhang X. Y., Marrogi A., Graff J. R., Baylin S. B., and Ehrlich M.. 1998. Hypomethylation of pericentromeric DNA in breast adenocarcinomas. Int. J. Cancer 77:833–838.
  • Pfeifer, G. P., Steigerwald S. D., Hansen R. S., Gartler S. M., and Riggs A. D.. 1990. Polymerase chain reaction-aided genomic sequencing of an X chromosome-linked CpG island: methylation patterns suggest clonal inheritance, CpG site autonomy, and an explanation of activity state stability. Proc. Natl. Acad. Sci. USA 87:8252–8256.
  • Riggs, A. D., and Pfeifer G. P.. 1992. X-chromosome inactivation and cell memory. Trends Genet. 8:169–174.
  • Sahin, U., Tureci O., Chen Y. T., Seitz G., Villena-Heinsen C., Old L. J., and Pfreundschuh M.. 1998. Expression of multiple cancer/testis (CT) antigens in breast cancer and melanoma: basis for polyvalent CT vaccine strategies. Int. J. Cancer 78:387–389.
  • Tamaru, H., and Selker E. U.. 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 414:277–283.
  • Traversari, C., van der Bruggen P., Van den Eynde B., Hainaut P., Lemoine C., Ohta N., Old L., and Boon T.. 1992. Transfection and expression of a gene coding for a human melanoma antigen recognized by autologous cytolytic T lymphocytes. Immunogenetics 35:145–152.
  • van Baren, N., Brasseur F., Godelaine D., Hames G., Ferrant A., Lehmann F., Andre M., Ravoet C., Doyen C., Spagnoli G. C., Bakkus M., Thielemans K., and Boon T.. 1999. Genes encoding tumor-specific antigens are expressed in human myeloma cells. Blood 94:1156–1164.
  • Van Der Bruggen, P., Zhang Y., Chaux P., Stroobant V., Panichelli C., Schultz E. S., Chapiro J., Van Den Eynde B. J., Brasseur F., and Boon T.. 2002. Tumor-specific shared antigenic peptides recognized by human T cells. Immunol. Rev. 188:51–64.
  • Weber, J., Salgaller M., Samid D., Johnson B., Herlyn M., Lassam N., Treisman J., and Rosenberg S. A.. 1994. Expression of the MAGE-1 tumor antigen is up-regulated by the demethylating agent 5-aza-2′-deoxycytidine. Cancer Res. 54:1766–1771.
  • Weiser, T. S., Guo Z. S., Ohnmacht G. A., Parkhurst M. L., Tong-On P., Marincola F. M., Fischette M. R., Yu X., Chen G. A., Hong J. A., Stewart J. H., Nguyen D. M., Rosenberg S. A., and Schrump D. S.. 2001. Sequential 5-Aza-2 deoxycytidine-depsipeptide FR901228 treatment induces apoptosis preferentially in cancer cells and facilitates their recognition by cytolytic T lymphocytes specific for NY-ESO-1. J. Immunother. 24:151–161.
  • Yoder, J. A., Walsh C. P., and Bestor T. H.. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13:335–340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.