9
Views
27
CrossRef citations to date
0
Altmetric
Nucleocytoplasmic Communication

The Nuclear Pore Complex and the DEAD Box Protein Rat8p/Dbp5p Have Nonessential Features Which Appear To Facilitate mRNA Export following Heat Shock

, &
Pages 4869-4879 | Received 09 Dec 2003, Accepted 15 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Bailer, S. M., Balduf C., Katahira J., Podtelejnikov A., Rollenhagen C., Mann M., Pante N., and Hurt E.. 2000. Nup116p associates with the Nup82p-Nsp1p-Nup159p nucleoporin complex. J. Biol. Chem. 275:23540–23548.
  • Belgareh, N., Snay-Hodge C., Pasteau F., Dagher S., Cole C. N., and Doye V.. 1998. Functional characterization of a Nup159p-containing nuclear pore subcomplex. Mol. Biol. Cell 9:3475–3492.
  • Craig, E. A., Gambill B. D., and Nelson R. J.. 1993. Heat shock proteins: molecular chaperones of protein biogenesis. Microbiol. Rev. 57:402–414.
  • Cullen, B. R. 2003. Nuclear RNA export. J. Cell Sci. 116:587–597.
  • Damelin, M., and Silver P. A.. 2000. Mapping interactions between nuclear transport factors in living cells reveals pathways through the nuclear pore complex. Mol. Cell 5:133–140.
  • Del Priore, V., Heath C., Snay C., MacMillan A., Gorsch L., Dagher S., and Cole C.. 1997. A structure/function analysis of Rat7p/Nup159p, an essential nucleoporin of Saccharomyces cerevisiae. J. Cell Sci. 110:2987–2999.
  • Del Priore, V., Snay C. A., Bahr A., and Cole C. N.. 1996. The product of the Saccharomyces cerevisiae RSS1 gene, identified as a high-copy suppressor of the rat7-1 temperature-sensitive allele of the RAT7/NUP159 nucleoporin, is required for efficient mRNA export. Mol. Biol. Cell 7:1601–1621.
  • Dreyfuss, G., Kim V. N., and Kataoka N.. 2002. Messenger-RNA-binding proteins and the messages they carry. Nat. Rev. Mol. Cell Biol. 3:195–205.
  • Gorsch, L. C., Dockendorff T. C., and Cole C. N.. 1995. A conditional allele of the novel repeat-containing yeast nucleoporin RAT7/NUP159 causes both rapid cessation of mRNA export and reversible clustering of nuclear pore complexes. J. Cell Biol. 129:939–955.
  • Hammell, C. M., Gross S., Zenklusen D., Heath C. V., Stutz F., Moore C., and Cole C. N.. 2002. Coupling of termination, 3′ processing, and mRNA export. Mol. Cell. Biol. 22:6441–6457.
  • Hodge, C. A., Colot H. V., Stafford P., and Cole C. N.. 1999. Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J. 18:5778–5788.
  • Hurwitz, M. E., and Blobel G.. 1995. NUP82 is an essential yeast nucleoporin required for poly(A)+ RNA export. J. Cell Biol. 130:1275–1281.
  • Hurwitz, M. E., Strambio-de-Castillia C., and Blobel G.. 1998. Two yeast nuclear pore complex proteins involved in mRNA export form a cytoplasmically oriented subcomplex. Proc. Natl. Acad. Sci. USA 95:11241–11245.
  • Jankowsky, E., Gross C. H., Shuman S., and Pyle A. M.. 2000. The DExH protein NPH-II is a processive and directional motor for unwinding RNA. Nature 403:447–451.
  • Jensen, T. H., Dower K., Libri D., and Rosbash M.. 2003. Early formation of mRNP: license for export or quality control? Mol. Cell 11:1129–1138.
  • Jensen, T. H., Patricio K., McCarthy T., and Rosbash M.. 2001. A block to mRNA nuclear export in S. cerevisiae leads to hyperadenylation of transcripts that accumulate at the site of transcription. Mol. Cell 7:887–898.
  • Jensen, T. H., and Rosbash M.. 2003. Co-transcriptional monitoring of mRNP formation. Nat. Struct. Biol. 10:10–12.
  • Krebber, H., Taura T., Lee M. S., and Silver P. A.. 1999. Uncoupling of the hnRNP Npl3p from mRNAs during the stress-induced block in mRNA export. Genes Dev. 13:1994–2004.
  • Lei, E. P., Krebber H., and Silver P. A.. 2001. Messenger RNAs are recruited for nuclear export during transcription. Genes Dev. 15:1771–1782.
  • Lei, E. P., and Silver P. A.. 2002. Protein and RNA export from the nucleus. Dev. Cell 2:261–272.
  • Moerschell, R. P., Tsunasawa S., and Sherman F.. 1988. Transformation of yeast with synthetic oligonucleotides. Proc. Natl. Acad. Sci. USA 85:524–528.
  • Petracek, M. E., and Longtine M. S.. 2002. PCR-based engineering of yeast genome. Methods Enzymol. 350:445–469.
  • Piper, P. 1996. Induction of heat shock proteins and thermotolerance. Methods Mol. Biol. 53:313–317.
  • Piper, P. W. 1995. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol. Lett. 134:121–127.
  • Reed, R., and Hurt E.. 2002. A conserved mRNA export machinery coupled to pre-mRNA splicing. Cell 108:523–531.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Rout, M. P., and Aitchison J. D.. 2001. The nuclear pore complex as a transport machine. J. Biol. Chem. 276:16593–16596.
  • Rout, M. P., Aitchison J. D., Suprapto A., Hjertaas K., Zhao Y., and Chait B. T.. 2000. The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148:635–651.
  • Rout, M. P., and Wente S. R.. 1994. Pores for thought: nuclear pore complex proteins. Trends Cell Biol. 4:357–365.
  • Ryan, K. J., and Wente S. R.. 2000. The nuclear pore complex: a protein machine bridging the nucleus and cytoplasm. Curr. Opin. Cell Biol. 12:361–371.
  • Saavedra, C., Tung K. S., Amberg D. C., Hopper A. K., and Cole C. N.. 1996. Regulation of mRNA export in response to stress in Saccharomyces cerevisiae. Genes Dev. 10:1608–1620.
  • Saavedra, C. A., Hammell C. M., Heath C. V., and Cole C. N.. 1997. Yeast heat shock mRNAs are exported through a distinct pathway defined by Rip1p. Genes Dev. 11:2845–2856.
  • Schmitt, C., von Kobbe C., Bachi A., Pante N., Rodrigues J. P., Boscheron C., Rigaut G., Wilm M., Seraphin B., Carmo-Fonseca M., and Izaurralde E.. 1999. Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J. 18:4332–4347.
  • Siniossoglou, S., Lutzmann M., Santos-Rosa H., Leonard K., Mueller S., Aebi U., and Hurt E.. 2000. Structure and assembly of the Nup84p complex. J. Cell Biol. 149:41–54.
  • Snay-Hodge, C. A., Colot H. V., Goldstein A. L., and Cole C. N.. 1998. Dbp5p/Rat8p is a yeast nuclear pore-associated DEAD-box protein essential for RNA export. EMBO J. 17:2663–2676.
  • Stoffler, D., Fahrenkrog B., and Aebi U.. 1999. The nuclear pore complex: from molecular architecture to functional dynamics. Curr. Opin. Cell Biol. 11:391–401.
  • Strahm, Y., Fahrenkrog B., Zenklusen D., Rychner E., Kantor J., Rosbash M., and Stutz F.. 1999. The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr 255p. EMBO J. 18:5761–5777.
  • Strawn, L. A., Shen T., Shulga N., Goldfarb D. S., and Wente S. R.. 2004. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat. Cell Biol. 6:197–206.
  • Stutz, F., Neville M., and Rosbash M.. 1995. Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast. Cell 82:495–506.
  • Suntharalingam, M., and Wente S. R.. 2003. Peering through the pore: nuclear pore complex structure, assembly, and function. Dev. Cell 4:775–789.
  • Tanner, N. K., and Linder P.. 2001. DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol. Cell 8:251–262.
  • Tseng, S. S., Weaver P. L., Liu Y., Hitomi M., Tartakoff A. M., and Chang T. H.. 1998. Dbp5p, a cytosolic RNA helicase, is required for poly(A)+ RNA export. EMBO J. 17:2651–2662.
  • Wagner, J. D., Jankowsky E., Company M., Pyle A. M., and Abelson J. N.. 1998. The DEAH-box protein PRP22 is an ATPase that mediates ATP-dependent mRNA release from the spliceosome and unwinds RNA duplexes. EMBO J. 17:2926–2937.
  • Weis, K. 2002. Nucleocytoplasmic transport: cargo trafficking across the border. Curr. Opin. Cell Biol. 14:328–335.
  • Winston, F., Dolland C., and Ricupero-Hovasse S. L.. 1995. Constructing a set of convenient Saccharomyces cerevisiae strains that are isogenic to S288C. Yeast 11:53–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.