7
Views
32
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Regulation of Constitutive p50/c-Rel Activity via Proteasome Inhibitor-Resistant IκBα Degradation in B Cells

, , , &
Pages 4895-4908 | Received 30 Nov 2003, Accepted 02 Mar 2004, Published online: 27 Mar 2023

REFERENCES

  • Allman, D., Lindsley R. C., DeMuth W., Rudd K., Shinton S. A., and Hardy R. R.. 2001. Resolution of three nonproliferative immature splenic B cell subsets reveals multiple selection points during peripheral B cell maturation. J. Immunol. 167:6834–6840.
  • Bargou, R. C., Emmerich F., Krappmann D., Bommert K., Mapara M. Y., Arnold W., Royer H. D., Grinstein E., Greiner A., Scheidereit C., and Dorken B.. 1997. Constitutive nuclear factor-κB-RelA activation is required for proliferation and survival of Hodgkin's disease tumor cells. J. Clin. Investig. 100:2961–2969.
  • Barkett, M., Xue D., Horvitz H. R., and Gilmore T. D.. 1997. Phosphorylation of IκB-α inhibits its cleavage by caspase CPP32 in vitro. J. Biol. Chem. 272:29419–29422.
  • Brown, K., Franzoso G., Baldi L., Carlson L., Mills L., Lin Y. C., Gerstberger S., and Siebenlist U.. 1997. The signal response of IκBα is regulated by transferable N- and C-terminal domains. Mol. Cell. Biol. 17:3021–3027.
  • Cancro, M. P., Allman D. M., Hayes C. E., Lentz V. M., Fields R. G., Sah A. P., and Tomayko M.. 1998. B cell maturation and selection at the marrow-periphery interface. Immunol. Res. 17:3–11.
  • Chen, Y., Wu J., and Ghosh G.. 2003. κB-Ras binds to the unique insert within the ankyrin repeat domain of IκBβ and regulates cytoplasmic retention of IκBβ × NF-κB complexes. J. Biol. Chem. 278:23101–23106.
  • Chen, Z., Hagler J., Palombella V. J., Melandri F., Scherer D., Ballard D., and Maniatis T.. 1995. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 9:1586–1597.
  • Chiao, P. J., Miyamoto S., and Verma I. M.. 1994. Autoregulation of IκBα activity. Proc. Natl. Acad. Sci. USA 91:28–32.
  • Claudio, E., Brown K., Park S., Wang H., and Siebenlist U.. 2002. BAFF-induced NEMO-independent processing of NF-κB2 in maturing B cells. Nat. Immunol. 3:958–965.
  • Clise-Dwyer, K., Amanna I. J., Duzeski J. L., Nashold F. E., and Hayes C. E.. 2001. Genetic studies of B-lymphocyte deficiency and mastocytosis in strain A/WySnJ mice. Immunogenetics 53:729–735.
  • Cogswell, P. C., Kashatus D. F., Keifer J. A., Guttridge D. C., Reuther J. Y., Bristow C., Roy S., Nicholson D. W., and Baldwin A. S., Jr. 2003. NF-κB and IκBα are found in the mitochondria. Evidence for regulation of mitochondrial gene expression by NF-κB. J. Biol. Chem. 278:2963–2968.
  • Cuervo, A. M., Hu W., Lim B., and Dice J. F.. 1998. IκB is a substrate for a selective pathway of lysosomal proteolysis. Mol. Biol. Cell 9:1995–2010.
  • Davis, R. E., Brown K. D., Siebenlist U., and Staudt L. M.. 2001. Constitutive nuclear factor κB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J. Exp. Med. 194:1861–1874.
  • DiDonato, J. A., Hayakawa M., Rothwarf D. M., Zandi E., and Karin M.. 1997. A cytokine-responsive IκB kinase that activates the transcription factor NF-κB. Nature 388:548–554.
  • Doerre, S., and Corley R. B.. 1999. Constitutive nuclear translocation of NF-κB in B cells in the absence of IκB degradation. J. Immunol. 163:269–277.
  • Duffey, D. C., Chen Z., Dong G., Ondrey F. G., Wolf J. S., Brown K., Siebenlist U., and Van Waes C.. 1999. Expression of a dominant-negative mutant inhibitor-κBα of nuclear factor-κB in human head and neck squamous cell carcinoma inhibits survival, proinflammatory cytokine expression, and tumor growth in vivo. Cancer Res. 59:3468–3474.
  • Fields, E. R., Seufzer B. J., Oltz E. M., and Miyamoto S.. 2000. A switch in distinct IκBα degradation mechanisms mediates constitutive NF-κB activation in mature B cells. J. Immunol. 164:4762–4767.
  • Geleziunas, R., Ferrell S., Lin X., Mu Y., Cunningham E. T., Jr., Grant M., Connelly M. A., Hambor J. E., Marcu K. B., and Greene W. C.. 1998. Human T-cell leukemia virus type 1 Tax induction of NF-κB involves activation of the IκB kinase α (IKKα) and IKKβ cellular kinases. Mol. Cell. Biol. 18:5157–5165.
  • Ghosh, S., and Karin M.. 2002. Missing pieces in the NF-κB puzzle. Cell 109(Suppl.):S81–S96.
  • Grumont, R. J., and Gerondakis S.. 1994. The subunit composition of NF-κB complexes changes during B-cell development. Cell Growth Differ. 5:1321–1331.
  • Han, Y., Weinman S., Boldogh I., Walker R. K., and Brasier A. R.. 1999. Tumor necrosis factor-alpha-inducible IκBα proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-κb activation. J. Biol. Chem. 274:787–794.
  • Hideshima, T., Chauhan D., Richardson P., Mitsiades C., Mitsiades N., Hayashi T., Munshi N., Dang L., Castro A., Palombella V., Adams J., and Anderson K. C.. 2002. NF-κB as a therapeutic target in multiple myeloma. J. Biol. Chem. 277:16639–16647.
  • Huang, T. T., Feinberg S. L., Suryanarayanan S., and Miyamoto S.. 2002. The zinc finger domain of NEMO is selectively required for NF-κB activation by UV radiation and topoisomerase inhibitors. Mol. Cell. Biol. 22:5813–5825.
  • Huang, T. T., Wuerzberger-Davis S. M., Seufzer B. J., Shumway S. D., Kurama T., Boothman D. A., and Miyamoto S.. 2000. NF-κB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J. Biol. Chem. 275:9501–9509.
  • Huxford, T., Malek S., and Ghosh G.. 2000. Preparation and crystallization of dynamic NF-κB.IκB complexes. J. Biol. Chem. 275:32800–32806.
  • Imbert, V., Rupec R. A., Livolsi A., Pahl H. L., Traenckner E. B., Mueller-Dieckmann C., Farahifar D., Rossi B., Auberger P., Baeuerle P. A., and Peyron J. F.. 1996. Tyrosine phosphorylation of IκB-α activates NF-κB without proteolytic degradation of IκB-α. Cell 86:787–798.
  • Inoue, J., Kerr L. D., Ransone L. J., Bengal E., Hunter T., and Verma I. M.. 1991. c-rel activates but v-rel suppresses transcription from κB sites. Proc. Natl. Acad. Sci. USA 88:3715–3719.
  • Jacobs, M. D., and Harrison S. C.. 1998. Structure of an IκBα/NF-κB complex. Cell 95:749–758.
  • Kaisho, T., Takeda K., Tsujimura T., Kawai T., Nomura F., Terada N., and Akira S.. 2001. IκB kinase alpha is essential for mature B cell development and function. J. Exp. Med. 193:417–426.
  • Kang, J. L., Pack I. S., Hong S. M., Lee H. S., and Castranova V.. 2000. Silica induces nuclear factor-κB activation through tyrosine phosphorylation of IκB-α in RAW264.7 macrophages. Toxicol. Appl. Pharmacol. 169:59–65.
  • Karin, M., and Ben-Neriah Y.. 2000. Phosphorylation meets ubiquitination: the control of NF-[κ]B activity. Annu. Rev. Immunol. 18:621–663.
  • Karin, M., Cao Y., Greten F. R., and Li Z. W.. 2002. NF-κB in cancer: from innocent bystander to major culprit. Nat. Rev. Cancer 2:301–310.
  • Krappmann, D., Wulczyn F. G., and Scheidereit C.. 1996. Different mechanisms control signal-induced degradation and basal turnover of the NF-κB inhibitor IκB α in vivo. EMBO J. 15:6716–6726.
  • Lentz, V. M., Hayes C. E., and Cancro M. P.. 1998. Bcmd decreases the life span of B-2 but not B-1 cells in A/WySnJ mice. J. Immunol. 160:3743–3747.
  • Liou, H. C., Sha W. C., Scott M. L., and Baltimore D.. 1994. Sequential induction of NF-κB/Rel family proteins during B-cell terminal differentiation. Mol. Cell. Biol. 14:5349–5359.
  • Malek, S., Huang D. B., Huxford T., Ghosh S., and Ghosh G.. 2003. X-ray crystal structure of an IκBβ × NF-κB p65 homodimer complex. J. Biol. Chem. 278:23094–23100.
  • McElhinny, J. A., Trushin S. A., Bren G. D., Chester N., and Paya C. V.. 1996. Casein kinase II phosphorylates IκBα at S-283, S-289, S-293, and T-291 and is required for its degradation. Mol. Cell. Biol. 16:899–906.
  • Mercurio, F., Zhu H., Murray B. W., Shevchenko A., Bennett B. L., Li J., Young D. B., Barbosa M., Mann M., Manning A., and Rao A.. 1997. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 278:860–866.
  • Miyamoto, S., Chiao P. J., and Verma I. M.. 1994. Enhanced IκBα degradation is responsible for constitutive NF-κB activity in mature murine B-cell lines. Mol. Cell. Biol. 14:3276–3282.
  • Miyamoto, S., Schmitt M. J., and Verma I. M.. 1994. Qualitative changes in the subunit composition of κB-binding complexes during murine B-cell differentiation. Proc. Natl. Acad. Sci. USA 91:5056–5060.
  • Miyamoto, S., Seufzer B. J., and Shumway S. D.. 1998. Novel IκBα proteolytic pathway in WEHI231 immature B cells. Mol. Cell. Biol. 18:19–29.
  • Palombella, V. J., Rando O. J., Goldberg A. L., and Maniatis T.. 1994. The ubiquitin-proteasome pathway is required for processing the NF-κB1 precursor protein and the activation of NF-κB. Cell 78:773–785.
  • Pando, M. P., and Verma I. M.. 2000. Signal-dependent and -independent degradation of free and NF-κB-bound IκBα. J. Biol. Chem. 275:21278–21286.
  • Pasparakis, M., Schmidt-Supprian M., and Rajewsky K.. 2002. IκB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196:743–752.
  • Petranka, J., Wright G., Forbes R. A., and Murphy E.. 2001. Elevated calcium in preneoplastic cells activates NF-κB and confers resistance to apoptosis. J. Biol. Chem. 276:37102–37108.
  • Pianetti, S., Arsura M., Romieu-Mourez R., Coffey R. J., and Sonenshein G. E.. 2001. Her-2/neu overexpression induces NF-κB via a PI3-kinase/Akt pathway involving calpain-mediated degradation of IκB-α that can be inhibited by the tumor suppressor PTEN. Oncogene 20:1287–1299.
  • Pohl, T., Gugasyan R., Grumont R. J., Strasser A., Metcalf D., Tarlinton D., Sha W., Baltimore D., and Gerondakis S.. 2002. The combined absence of NF-κB1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells. Proc. Natl. Acad. Sci. USA 99:4514–4519.
  • Reuther, J. Y., and Baldwin A. S., Jr. 1999. Apoptosis promotes a caspase-induced amino-terminal truncation of IκBα that functions as a stable inhibitor of NF-κB. J. Biol. Chem. 274:20664–20670.
  • Richardson, P. G., Barlogie B., Berenson J., Singhal S., Jagannath S., Irwin D., Rajkumar S. V., Srkalovic G., Alsina M., Alexanian R., Siegel D., Orlowski R. Z., Kuter D., Limentani S. A., Lee S., Hideshima T., Esseltine D. L., Kauffman M., Adams J., Schenkein D. P., and Anderson K. C.. 2003. A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348:2609–2617.
  • Schiemann, B., Gommerman J. L., Vora K., Cachero T. G., Shulga-Morskaya S., Dobles M., Frew E., and Scott M. L.. 2001. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science 293:2111–2114.
  • Schwarz, E. M., Van Antwerp D., and Verma I. M.. 1996. Constitutive phosphorylation of IκBα by casein kinase II occurs preferentially at serine 293: requirement for degradation of free IκBα. Mol. Cell. Biol. 16:3554–3559.
  • Sen, R., and Baltimore D.. 1986. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46:705–716.
  • Senftleben, U., Cao Y., Xiao G., Greten F. R., Krahn G., Bonizzi G., Chen Y., Hu Y., Fong A., Sun S. C., and Karin M.. 2001. Activation by IKKα of a second, evolutionary conserved, NF-κB signaling pathway. Science 293:1495–1499.
  • Shen, J., Channavajhala P., Seldin D. C., and Sonenshein G. E.. 2001. Phosphorylation by the protein kinase CK2 promotes calpain-mediated degradation of IκBα. J. Immunol. 167:4919–4925.
  • Shirane, M., Hatakeyama S., Hattori K., and Nakayama K.. 1999. Common pathway for the ubiquitination of IκBα, IκBβ, and IκBε mediated by the F-box protein FWD1. J. Biol. Chem. 274:28169–28174.
  • Shumway, S. D., Berchtold C. M., Gould M. N., and Miyamoto S.. 2002. Evidence for unique calmodulin-dependent nuclear factor-κB regulation in WEHI-231 B cells. Mol. Pharmacol. 61:177–185.
  • Shumway, S. D., and Miyamoto S.. A mechanistic insight into a proteasome-independent constitutive IκBα degradation and NF-κB activation pathway in WEHI-231 B cells. Biochem. J., in press.
  • Simeonidis, S., Stauber D., Chen G., Hendrickson W. A., and Thanos D.. 1999. Mechanisms by which IκB proteins control NF-κB activity. Proc. Natl. Acad. Sci. USA 96:49–54.
  • Solan, N. J., Miyoshi H., Carmona E. M., Bren G. D., and Paya C. V.. 2002. RelB cellular regulation and transcriptional activity are regulated by p100. J. Biol. Chem. 277:1405–1418.
  • Sovak, M. A., Bellas R. E., Kim D. W., Zanieski G. J., Rogers A. E., Traish A. M., and Sonenshein G. E.. 1997. Aberrant nuclear factor-κB/Rel expression and the pathogenesis of breast cancer. J. Clin. Investig. 100:2952–2960.
  • Spencer, E., Jiang J., and Chen Z. J.. 1999. Signal-induced ubiquitination of IκBα by the F-box protein Slimb/β-TrCP. Genes Dev. 13:284–294.
  • Sun, S. C., Elwood J., Beraud C., and Greene W. C.. 1994. Human T-cell leukemia virus type I Tax activation of NF-κB/Rel involves phosphorylation and degradation of IκBα and RelA (p65)-mediated induction of the c-rel gene. Mol. Cell. Biol. 14:7377–7384.
  • Sun, S. C., Ganchi P. A., Ballard D. W., and Greene W. C.. 1993. NF-κB controls expression of inhibitor IκBα: evidence for an inducible autoregulatory pathway. Science 259:1912–1915.
  • Traenckner, E. B., Wilk S., and Baeuerle P. A.. 1994. A proteasome inhibitor prevents activation of NF-κB and stabilizes a newly phosphorylated form of IκB-α that is still bound to NF-κB. EMBO J. 13:5433–5441.
  • Van Antwerp, D. J., and Verma I. M.. 1996. Signal-induced degradation of IκBα: association with NF-κB and the PEST sequence in IκBα are not required. Mol. Cell. Biol. 16:6037–6045.
  • Whiteside, S. T., Ernst M. K., LeBail O., Laurent-Winter C., Rice N., and Israel A.. 1995. N- and C-terminal sequences control degradation of MAD3/IκBα in response to inducers of NF-κB activity. Mol. Cell. Biol. 15:5339–5345.
  • Wu, C., and Ghosh S.. 1999. β-TrCP mediates the signal-induced ubiquitination of IκBβ. J. Biol. Chem. 274:29591–29594.
  • Wu, G., Xu G., Schulman B. A., Jeffrey P. D., Harper J. W., and Pavletich N. P.. 2003. Structure of a β-TrCP1-Skp1-β-catenin complex: destruction motif binding and lysine specificity of the SCF(β-TrCP1) ubiquitin ligase. Mol. Cell 11:1445–1456.
  • Wulczyn, F. G., Krappmann D., and Scheidereit C.. 1998. Signal-dependent degradation of IκBα is mediated by an inducible destruction box that can be transferred to NF-κB, bcl-3 or p53. Nucleic Acids Res. 26:1724–1730.
  • Xiao, G., Harhaj E. W., and Sun S. C.. 2001. NF-κB-inducing kinase regulates the processing of NF-κB2 p100. Mol. Cell 7:401–409.
  • Yaron, A., Gonen H., Alkalay I., Hatzubai A., Jung S., Beyth S., Mercurio F., Manning A. M., Ciechanover A., and Ben-Neriah Y.. 1997. Inhibition of NF-κ-B cellular function via specific targeting of the I-κ-B-ubiquitin ligase. EMBO J. 16:6486–6494.
  • Yaron, A., Hatzubai A., Davis M., Lavon I., Amit S., Manning A. M., Andersen J. S., Mann M., Mercurio F., and Ben-Neriah Y.. 1998. Identification of the receptor component of the IκBα-ubiquitin ligase. Nature 396:590–594.
  • Zandi, E., Chen Y., and Karin M.. 1998. Direct phosphorylation of IκB by IKKα and IKKβ: discrimination between free and NF-κB-bound substrate. Science 281:1360–1363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.