46
Views
156
CrossRef citations to date
0
Altmetric
DNA Dynamics and Chromosome Structure

Histone H2A Phosphorylation Controls Crb2 Recruitment at DNA Breaks, Maintains Checkpoint Arrest, and Influences DNA Repair in Fission Yeast

, , &
Pages 6215-6230 | Received 17 Mar 2004, Accepted 26 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Alcasabas, A. A., Osborn A. J., Bachant J., Hu F., Werler P. J., Bousset K., Furuya K., Diffley J. F., Carr A. M., and Elledge S. J.. 2001. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nat. Cell Biol. 3:958–965.
  • Alfa, C., Fantes P., Hyams J., McLoed M., and Warbrick E.. 1993. Experiments with fission yeast. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • al-Khodairy, F., Fotou E., Sheldrick K. S., Griffiths D. J., Lehmann A. R., and Carr A. M.. 1994. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol. Biol. Cell 5:147–160.
  • Aylon, Y., and Kupiec M.. 2003. The checkpoint protein Rad24 of Saccharomyces cerevisiae is involved in processing double-strand break ends and in recombination partner choice. Mol. Cell. Biol. 23:6585–6596.
  • Baber-Furnari, B. A., Rhind N., Boddy M. N., Shanahan P., Lopez-Girona A., and Russell P.. 2000. Regulation of mitotic inhibitor Mik1 helps to enforce the DNA damage checkpoint. Mol. Biol. Cell 11:1–11.
  • Bassing, C. H., and Alt F. W.. 2004. H2AX may function as an anchor to hold broken chromosomal DNA ends in close proximity. Cell Cycle 3:149–153.
  • Bassing, C. H., Chua K. F., Sekiguchi J., Suh H., Whitlow S. R., Fleming J. C., Monroe B. C., Ciccone D. N., Yan C., Vlasakova K., Livingston D. M., Ferguson D. O., Scully R., and Alt F. W.. 2002. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc. Natl. Acad. Sci. USA 99:8173–8178.
  • Bassing, C. H., Suh H., Ferguson D. O., Chua K. F., Manis J., Eckersdorff M., Gleason M., Bronson R., Lee C., and Alt F. W.. 2003. Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114:359–370.
  • Bird, A. W., Yu D. Y., Pray-Grant M. G., Qiu Q., Harmon K. E., Megee P. C., Grant P. A., Smith M. M., and Christman M. F.. 2002. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419:411–415.
  • Carr, A. M. 2002. DNA structure dependent checkpoints as regulators of DNA repair. DNA Repair (Amsterdam) 1:983–994.
  • Caspari, T., and Carr A. M.. 1999. DNA structure checkpoint pathways in Schizosaccharomyces pombe. Biochimie 81:173–181.
  • Caspari, T., Dahlen M., Kanter-Smoler G., Lindsay H. D., Hofmann K., Papadimitriou K., Sunnerhagen P., and Carr A. M.. 2000. Characterization of Schizosaccharomyces pombe Hus1: a PCNA-related protein that associates with Rad1 and Rad9. Mol. Cell. Biol. 20:1254–1262.
  • Caspari, T., Murray J. M., and Carr A. M.. 2002. Cdc2-cyclin B kinase activity links Crb2 and Rqh1-topoisomerase III. Genes Dev. 16:1195–1208.
  • Celeste, A., Difilippantonio S., Difilippantonio M. J., Fernandez-Capetillo O., Pilch D. R., Sedelnikova O. A., Eckhaus M., Ried T., Bonner W. M., and Nussenzweig A.. 2003. H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114:371–383.
  • Celeste, A., Fernandez-Capetillo O., Kruhlak M. J., Pilch D. R., Staudt D. W., Lee A., Bonner R. F., Bonner W. M., and Nussenzweig A.. 2003. Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat. Cell Biol. 5:675–679.
  • Celeste, A., Petersen S., Romanienko P. J., Fernandez-Capetillo O., Chen H. T., Sedelnikova O. A., Reina-San-Martin B., Coppola V., Meffre E., Difilippantonio M. J., Redon C., Pilch D. R., Olaru A., Eckhaus M., Camerini-Otero R. D., Tessarollo L., Livak F., Manova K., Bonner W. M., Nussenzweig M. C., and Nussenzweig A.. 2002. Genomic instability in mice lacking histone H2AX. Science 296:922–927.
  • Chahwan, C., Nakamura T. M., Sivakumar S., Russell P., and Rhind N.. 2003. The fission yeast Rad32 (Mre11)-Rad50-Nbs1 complex is required for the S-phase DNA damage checkpoint. Mol. Cell. Biol. 23:6564–6573.
  • Choe, J., Schuster T., and Grunstein M.. 1985. Organization, primary structure, and evolution of histone H2A and H2B genes of the fission yeast Schizosaccharomyces pombe. Mol. Cell. Biol. 5:3261–3269.
  • D'Amours, D., and Jackson S. P.. 2001. The yeast Xrs2 complex functions in S phase checkpoint regulation. Genes Dev. 15:2238–2249.
  • Downs, J. A., Lowndes N. F., and Jackson S. P.. 2000. A role for Saccharomyces cerevisiae histone H2A in DNA repair. Nature 408:1001–1004.
  • Du, L.-L., Nakamura T. M., Moser B. A., and Russell P.. 2003. Retention but not recruitment of Crb2 at double-strand breaks requires Rad1 and Rad3 complexes. Mol. Cell. Biol. 23:6150–6158.
  • Edwards, R. J., Bentley N. J., and Carr A. M.. 1999. A Rad3-Rad26 complex responds to DNA damage independently of other checkpoint proteins. Nat. Cell Biol. 1:393–398.
  • Fernandez-Capetillo, O., Chen H. T., Celeste A., Ward I., Romanienko P. J., Morales J. C., Naka K., Xia Z., Camerini-Otero R. D., Motoyama N., Carpenter P. B., Bonner W. M., Chen J., and Nussenzweig A.. 2002. DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat. Cell Biol. 4:993–997.
  • Fernandez-Capetillo, O., Liebe B., Scherthan H., and Nussenzweig A.. 2003. H2AX regulates meiotic telomere clustering. J. Cell Biol. 163:15–20.
  • Fernandez-Capetillo, O., Mahadevaiah S. K., Celeste A., Romanienko P. J., Camerini-Otero R. D., Bonner W. M., Manova K., Burgoyne P., and Nussenzweig A.. 2003. H2AX is required for chromatin remodeling and inactivation of sex chromosomes in male mouse meiosis. Dev. Cell 4:497–508.
  • Fernandez-Capetillo, O., and Nussenzweig A.. 2004. Linking histone deacetylation with the repair of DNA breaks. Proc. Natl. Acad. Sci. USA 101:1427–1428.
  • Ferreira, M. G., and Cooper J. P.. 2001. The fission yeast Taz1 protein protects chromosomes from Ku-dependent end-to-end fusions. Mol. Cell 7:55–63.
  • Furuta, T., Takemura H., Liao Z. Y., Aune G. J., Redon C., Sedelnikova O. A., Pilch D. R., Rogakou E. P., Celeste A., Chen H. T., Nussenzweig A., Aladjem M. I., Bonner W. M., and Pommier Y.. 2003. Phosphorylation of histone H2AX and activation of Mre11, Rad50, and Nbs1 in response to replication-dependent DNA double-strand breaks induced by mammalian DNA topoisomerase I cleavage complexes. J. Biol. Chem. 278:20303–20312.
  • Goldberg, M., Stucki M., Falck J., D'Amours D., Rahman D., Pappin D., Bartek J., and Jackson S. P.. 2003. MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–956.
  • Grenon, M., Gilbert C., and Lowndes N. F.. 2001. Checkpoint activation in response to double-strand breaks requires the Mre11/Rad50/Xrs2 complex. Nat. Cell Biol. 3:844–847.
  • Griffith, J. D., Lindsey-Boltz L. A., and Sancar A.. 2002. Structures of the human rad17-replication factor C and checkpoint rad 9-1-1 complexes visualized by glycerol spray/low voltage microscopy. J. Biol. Chem. 277:15233–15236.
  • Griffiths, D. J., Barbet N. C., McCready S., Lehmann A. R., and Carr A. M.. 1995. Fission yeast rad17: a homologue of budding yeast RAD24 that shares regions of sequence similarity with DNA polymerase accessory proteins. EMBO J. 14:5812–5823.
  • Hickson, I. D. 2003. RecQ helicases: caretakers of the genome. Nat. Rev. Cancer 3:169–178.
  • Iizuka, M., and Smith M. M.. 2003. Functional consequences of histone modifications. Curr. Opin. Genet. Dev. 13:154–160.
  • Iwabuchi, K., Basu B. P., Kysela B., Kurihara T., Shibata M., Guan D., Cao Y., Hamada T., Imamura K., Jeggo P. A., Date T., and Doherty A. J.. 2003. Potential role for 53BP1 in DNA end-joining repair through direct interaction with DNA. J. Biol. Chem. 278:36487–36495.
  • Jazayeri, A., McAinsh A. D., and Jackson S. P.. 2004. Saccharomyces cerevisiae Sin3p facilitates DNA double-strand break repair. Proc. Natl. Acad. Sci. USA 101:1644–1649.
  • Jenuwein, T., and Allis C. D.. 2001. Translating the histone code. Science 293:1074–1080.
  • Kai, M., Tanaka H., and Wang T. S.. 2001. Fission yeast Rad17 associates with chromatin in response to aberrant genomic structures. Mol. Cell. Biol. 21:3289–3301.
  • Kao, G. D., McKenna W. G., Guenther M. G., Muschel R. J., Lazar M. A., and Yen T. J.. 2003. Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. J. Cell Biol. 160:1017–1027.
  • Kobayashi, J., Tauchi H., Sakamoto S., Nakamura A., Morishima K., Matsuura S., Kobayashi T., Tamai K., Tanimoto K., and Komatsu K.. 2002. NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain. Curr. Biol. 12:1846–1851.
  • Laursen, L. V., Ampatzidou E., Andersen A. H., and Murray J. M.. 2003. Role for the fission yeast RecQ helicase in DNA repair in G2. Mol. Cell. Biol. 23:3692–3705.
  • Lopez-Girona, A., Furnari B., Mondesert O., and Russell P.. 1999. Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 397:172–175.
  • Lydall, D., and Weinert T.. 1995. Yeast checkpoint genes in DNA damage processing: implications for repair and arrest. Science 270:1488–1491.
  • Ma, J. L., Kim E. M., Haber J. E., and Lee S. E.. 2003. Yeast Mre11 and Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol. Cell. Biol. 23:8820–8828.
  • Manke, I. A., Lowery D. M., Nguyen A., and Yaffe M. B.. 2003. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639.
  • Manolis, K. G., Nimmo E. R., Hartsuiker E., Carr A. M., Jeggo P. A., and Allshire R. C.. 2001. Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J. 20:210–221.
  • Martinho, R. G., Lindsay H. D., Flaggs G., DeMaggio A. J., Hoekstra M. F., Carr A. M., and Bentley N. J.. 1998. Analysis of Rad3 and Chk1 protein kinases defines different checkpoint responses. EMBO J. 17:7239–7249.
  • Matsumoto, S., and Yanagida M.. 1985. Histone gene organization of fission yeast: a common upstream sequence. EMBO J. 4:3531–3538.
  • Melo, J., and Toczyski D.. 2002. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 14:237–245.
  • Melo, J. A., Cohen J., and Toczyski D. P.. 2001. Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev. 15:2809–2821.
  • Miyazaki, T., Bressan D. A., Shinohara M., Haber J. E., and Shinohara A.. 2004. In vivo assembly and disassembly of Rad51 and Rad52 complexes during double-strand break repair. EMBO J. 23:939–949.
  • Mochida, S., Esashi F., Aono N., Tamai K., O'Connell M. J., and Yanagida M.. 2004. Regulation of checkpoint kinases through dynamic interaction with Crb2. EMBO J. 23:418–428.
  • Morales, J. C., Xia Z., Lu T., Aldrich M. B., Wang B., Rosales C., Kellems R. E., Hittelman W. N., Elledge S. J., and Carpenter P. B.. 2003. Role for the BRCA1 C-terminal repeats (BRCT) protein 53BP1 in maintaining genomic stability. J. Biol. Chem. 278:14971–14977.
  • Moser, B. A., Brondello J. M., Baber-Furnari B., and Russell P.. 2000. Mechanism of caffeine-induced checkpoint override in fission yeast. Mol. Cell. Biol. 20:4288–4294.
  • Muris, D. F., Vreeken K., Carr A. M., Broughton B. C., Lehmann A. R., Lohman P. H., and Pastink A.. 1993. Cloning the RAD51 homologue of Schizosaccharomyces pombe. Nucleic Acids Res. 21:4586–4591.
  • Murray, J. M., Lindsay H. D., Munday C. A., and Carr A. M.. 1997. Role of Schizosaccharomyces pombe RecQ homolog, recombination, and checkpoint genes in UV damage tolerance. Mol. Cell. Biol. 17:6868–6875.
  • Nakada, D., Shimomura T., Matsumoto K., and Sugimoto K.. 2003. The ATM-related Tel1 protein of Saccharomyces cerevisiae controls a checkpoint response following phleomycin treatment. Nucleic Acids Res. 31:1715–1724.
  • Nakamura, T. M., Moser B. A., and Russell P.. 2002. Telomere binding of checkpoint sensor and DNA repair proteins contributes to maintenance of functional fission yeast telomeres. Genetics 161:1437–1452.
  • Park, E. J., Chan D. W., Park J. H., Oettinger M. A., and Kwon J.. 2003. DNA-PK is activated by nucleosomes and phosphorylates H2AX within the nucleosomes in an acetylation-dependent manner. Nucleic Acids Res. 31:6819–6827.
  • Paull, T. T., Rogakou E. P., Yamazaki V., Kirchgessner C. U., Gellert M., and Bonner W. M.. 2000. A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr. Biol. 10:886–895.
  • Pilch, D. R., Sedelnikova O. A., Redon C., Celeste A., Nussenzweig A., and Bonner W. M.. 2003. Characteristics of gamma-H2AX foci at DNA double-strand breaks sites. Biochem. Cell. Biol. 81:123–129.
  • Qin, S., and Parthun M. R.. 2002. Histone H3 and the histone acetyltransferase Hat1p contribute to DNA double-strand break repair. Mol. Cell. Biol. 22:8353–8365.
  • Redon, C., Pilch D., Rogakou E., Sedelnikova O., Newrock K., and Bonner W.. 2002. Histone H2A variants H2AX and H2AZ. Curr. Opin. Genet. Dev. 12:162–169.
  • Redon, C., Pilch D. R., Rogakou E. P., Orr A. H., Lowndes N. F., and Bonner W. M.. 2003. Yeast histone 2A serine 129 is essential for the efficient repair of checkpoint-blind DNA damage. EMBO Rep. 4:678–684.
  • Rhind, N., and Russell P.. 1998. Mitotic DNA damage and replication checkpoints in yeast. Curr. Opin. Cell Biol. 10:749–758.
  • Rhind, N., and Russell P.. 2001. Roles of the mitotic inhibitors Wee1 and Mik1 in the G2 DNA damage and replication checkpoints. Mol. Cell. Biol. 21:1499–1508.
  • Rigaut, G., Shevchenko A., Rutz B., Wilm M., Mann M., and Seraphin B.. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17:1030–1032.
  • Ritchie, K. B., and Petes T. D.. 2000. The Mre11p/Rad50p/Xrs2p complex and the Tel1p function in a single pathway for telomere maintenance in yeast. Genetics 155:475–479.
  • Rizzo, P. J. 2003. Those amazing dinoflagellate chromosomes. Cell Res. 13:215–217.
  • Rodriguez, M., Yu X., Chen J., and Songyang Z.. 2003. Phosphopeptide binding specificities of BRCA1 COOH-terminal (BRCT) domains. J. Biol. Chem. 278:52914–52918.
  • Saka, Y., Esashi F., Matsusaka T., Mochida S., and Yanagida M.. 1997. Damage and replication checkpoint control in fission yeast is ensured by interactions of Crb2, a protein with BRCT motif, with Cut5 and Chk1. Genes Dev. 11:3387–3400.
  • Sanchez, Y., Desany B. A., Jones W. J., Liu Q., Wang B., and Elledge S. J.. 1996. Regulation of RAD53 by the ATM-like kinases MEC1 and TEL1 in yeast cell cycle checkpoint pathways. Science 271:357–360.
  • Schultz, L. B., Chehab N. H., Malikzay A., and Halazonetis T. D.. 2000. p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J. Cell Biol. 151:1381–1390.
  • Shang, Y. L., Bodero A. J., and Chen P. L.. 2003. NFBD1, a novel nuclear protein with signature motifs of FHA and BRCT, and an internal 41-amino acid repeat sequence, is an early participant in DNA damage response. J. Biol. Chem. 278:6323–6329.
  • Stewart, E., Chapman C. R., Al-Khodairy F., Carr A. M., and Enoch T.. 1997. rqh1+, a fission yeast gene related to the Bloom's and Werner's syndrome genes, is required for reversible S phase arrest. EMBO J. 16:2682–2692.
  • Stewart, G. S., Wang B., Bignell C. R., Taylor A. M., and Elledge S. J.. 2003. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature 421:961–966.
  • Suto, K., Nagata A., Murakami H., and Okayama H.. 1999. A double-strand break repair component is essential for S phase completion in fission yeast cell cycling. Mol. Biol. Cell 10:3331–3343.
  • Tanaka, K., and Russell P.. 2001. Mrc1 channels the DNA replication arrest signal to checkpoint kinase Cds1. Nat. Cell Biol. 3:966–972.
  • Tsukamoto, Y., Taggart A. K., and Zakian V. A.. 2001. The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres. Curr. Biol. 11:1328–1335.
  • Ueno, M., Nakazaki T., Akamatsu Y., Watanabe K., Tomita K., Lindsay H. D., Shinagawa H., and Iwasaki H.. 2003. Molecular characterization of the Schizosaccharomyces pombe nbs1+ gene involved in DNA repair and telomere maintenance. Mol. Cell. Biol. 23:6553–6563.
  • Usui, T., Ogawa H., and Petrini J. H.. 2001. A DNA damage response pathway controlled by Tel1 and the Mre11 complex. Mol. Cell 7:1255–1266.
  • van den Bosch, M., Vreeken K., Zonneveld J. B., Brandsma J. A., Lombaerts M., Murray J. M., Lohman P. H., and Pastink A.. 2001. Characterization of RAD52 homologs in the fission yeast Schizosaccharomyces pombe. Mutat. Res. 461:311–323.
  • Ward, I. M., Minn K., Jorda K. G., and Chen J.. 2003. Accumulation of checkpoint protein 53BP1 at DNA breaks involves its binding to phosphorylated histone H2AX. J. Biol. Chem. 278:19579–19582.
  • Willson, J., Wilson S., Warr N., and Watts F. Z.. 1997. Isolation and characterization of the Schizosaccharomyces pombe rhp9 gene: a gene required for the DNA damage checkpoint but not the replication checkpoint. Nucleic Acids Res. 25:2138–2146.
  • Wilson, S., Tavassoli M., and Watts F. Z.. 1998. Schizosaccharomyces pombe rad32 protein: a phosphoprotein with an essential phosphoesterase motif required for repair of DNA double strand breaks. Nucleic Acids Res. 26:5261–5269.
  • Wilson, S., Warr N., Taylor D. L., and Watts F. Z.. 1999. The role of Schizosaccharomyces pombe Rad32, the Mre11 homologue, and other DNA damage response proteins in non-homologous end joining and telomere length maintenance. Nucleic Acids Res. 27:2655–2661.
  • Wolkow, T. D., and Enoch T.. 2002. Fission yeast rad26 is a regulatory subunit of the rad3 checkpoint kinase. Mol. Biol. Cell 13:480–492.
  • Wyatt, H. R., Liaw H., Green G. R., and Lustig A. J.. 2003. Multiple roles for Saccharomyces cerevisiae histone H2A in telomere position effect, Spt phenotypes and double-strand-break repair. Genetics 164:47–64.
  • Xu, X., and Stern D. F.. 2003. NFBD1/KIAA0170 is a chromatin-associated protein involved in DNA damage signaling pathways. J. Biol. Chem. 278:8795–8803.
  • Yu, X., Chini C. C., He M., Mer G., and Chen J.. 2003. The BRCT domain is a phospho-protein binding domain. Science 302:639–642.
  • Zhao, H., Tanaka K., Noguchi E., Noguchi C., and Russell P.. 2003. Replication checkpoint protein Mrc1 is regulated by Rad3 and Tel1 in fission yeast. Mol. Cell. Biol. 23:8395–8403.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.