39
Views
64
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Budding Yeast Silencing Complexes and Regulation of Sir2 Activity by Protein-Protein Interactions

, , , &
Pages 6931-6946 | Received 13 Feb 2004, Accepted 18 May 2004, Published online: 27 Mar 2023

REFERENCES

  • Anderson, R. M., Bitterman K. J., Wood J. G., Medvedik O., and Sinclair D. A.. 2003. Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423:181–185.
  • Armstrong, C. M., Kaeberlein M., Imai S. I., and Guarente L.. 2002. Mutations in Saccharomyces cerevisiae gene SIR2 can have differential effects on in vivo silencing phenotypes and in vitro histone deacetylation activity. Mol. Biol. Cell 13:1427–1438.
  • Avalos, J. L., Celic I., Muhammad S., Cosgrove M. S., Boeke J. D., and Wolberger C.. 2002. Structure of a Sir2 enzyme bound to an acetylated p53 peptide. Mol. Cell 10:523–535.
  • Bell, S. D., Botting C. H., Wardleworth B. N., Jackson S. P., and White M. F.. 2002. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science 296:148–151.
  • Bitterman, K. J., Anderson R. M., Cohen H. Y., Latorre-Esteves M., and Sinclair D. A.. 2002. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277:45099–45107.
  • Braunstein, M., Rose A. B., Holmes S. G., Allis C. D., and Broach J. R.. 1993. Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev. 7:592–604.
  • Bryk, M., Banerjee M., Murphy M., Knudsen K. E., Garfinkel D. J., and Curcio M. J.. 1997. Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11:255–269.
  • Carmen, A. A., Milne L., and Grunstein M.. 2002. Acetylation of the yeast histone H4 N terminus regulates its binding to heterochromatin protein SIR3. J. Biol. Chem. 277:4778–4781.
  • Chang, J. F., Hall B. E., Tanny J. C., Moazed D., Filman D., and Ellenberger T.. 2003. Structure of the coiled-coil dimerization motif of Sir4 and its interaction with Sir3. Structure (Cambridge) 11:637–649.
  • Chang, J. H., Kim H. C., Hwang K. Y., Lee J. W., Jackson S. P., Bell S. D., and Cho Y.. 2002. Structural basis for the NAD-dependent deacetylase mechanism of Sir2. J. Biol. Chem. 277:34489–34498.
  • Cockell, M. M., Perrod S., and Gasser S. M.. 2000. Analysis of sir2p domains required for rDNA and telomeric silencing in Saccharomyces cerevisiae. Genetics 155:2021.
  • Cuperus, G., Shafaatian R., and Shore D.. 2000. Locus specificity determinants in the multifunctional yeast silencing protein Sir2. EMBO J. 19:2641–2651.
  • Defossez, P. A., Prusty R., Kaeberlein M., Lin S. J., Ferrigno P., Silver P. A., Keil R. L., and Guarente L.. 1999. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol. Cell 3:447–455.
  • Frye, R. A. 1999. Characterization of five human cDNAs with homology to the yeast SIR2 gene: Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity. Biochem. Biophys. Res. Commun. 260:273–279.
  • Gallo, C. M., Smith D. L., Jr., and Smith J. S.. 2004. Nicotinamide clearance by Pnc1 directly regulates Sir2-mediated silencing and longevity. Mol. Cell. Biol. 24:1301–1312.
  • Ghidelli, S., Donze D., Dhillon N., and Kamakaka R. T.. 2001. Sir2p exists in two nucleosome-binding complexes with distinct deacetylase activities. EMBO J. 20:4522–4535.
  • Goldstein, A. L., Pan X., and McCusker J. H.. 1999. Heterologous URA3MX cassettes for gene replacement in Saccharomyces cerevisiae. Yeast 15:507–511.
  • Gottlieb, S., and Esposito R. E.. 1989. A new role for a yeast transcriptional silencer gene, SIR2, in regulation of recombination in ribosomal DNA. Cell 56:771–776.
  • Gottschling, D. E., Aparicio O. M., Billington B. L., and Zakian V. A.. 1990. Position effect at S. cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762.
  • Grewal, S. I., and Elgin S. C.. 2002. Heterochromatin: new possibilities for the inheritance of structure. Curr. Opin. Genet. Dev. 12:178–187.
  • Grewal, S. I., and Moazed D.. 2003. Heterochromatin and epigenetic control of gene expression. Science 301:798–802.
  • Guarente, L. 2000. Sir2 links chromatin silencing, metabolism, and aging. Genes Dev. 14:1021–1026.
  • Herskowitz, I., Rine J., and Strathern J.. 1992. Mating-type determination and mating-type interconversion in Saccharomyces cerevisiae, p. 583–656. In Jones E. W., Pringle J. R., and Broach J. (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. 2. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Holmes, S. G., Rose A. B., Steuerle K., Saez E., Sayegh S., Lee Y. M., and Broach J. R.. 1997. Hyperactivation of the silencing proteins, Sir2p and Sir3p, causes chromosome loss. Genetics 145:605–614.
  • Hoppe, G. J., Tanny J. C., Rudner A. D., Gerber S. A., Danaie S., Gygi S. P., and Moazed D.. 2002. Steps in assembly of silent chromatin in yeast: Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation. Mol. Cell. Biol. 22:4167–4180.
  • Huang, J., and Moazed D.. 2003. Association of the RENT complex with nontranscribed and coding regions of rDNA and a regional requirement for the replication fork block protein Fob1 in rDNA silencing. Genes Dev. 17:2162–2176.
  • Imai, S., Armstrong C. M., Kaeberlein M., and Guarente L.. 2000. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403:795–800.
  • Imbalzano, A. N., Kwon H., Green M. R., and Kingston R. E.. 1994. Facilitated binding of TATA-binding protein to nucleosomal DNA. Nature 370:481–485.
  • Ivy, J. M., Klar A. J., and Hicks J. B.. 1986. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol. Cell. Biol. 6:688–702.
  • Jackson, M. D., and Denu J. M.. 2002. Structural identification of 2′- and 3′-O-acetyl-ADP-ribose as novel metabolites derived from the Sir2 family of beta-NAD+-dependent histone/protein deacetylases. J. Biol. Chem. 277:18535–18544.
  • Jackson, M. D., Schmidt M. T., Oppenheimer N. J., and Denu J. M.. 2003. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J. Biol. Chem. 278:50985–50998.
  • Johnson, C. A., White D. A., Lavender J. S., O'Neill L. P., and Turner B. M.. 2002. Human class I histone deacetylase complexes show enhanced catalytic activity in the presence of ATP and co-immunoprecipitate with the ATP-dependent chaperone protein Hsp70. J. Biol. Chem. 277:9590–9597.
  • Johnson, L. M., Fisher-Adams G., and Grunstein M.. 1992. Identification of a non-basic domain in the histone H4 N-terminus required for repression of the yeast silent mating loci. EMBO J. 11:2201–2209.
  • Landry, J., Slama J. T., and Sternglanz R.. 2000. Role of NAD(+) in the deacetylase activity of the SIR2-like proteins. Biochem. Biophys. Res. Commun. 278:685–690.
  • Landry, J., Sutton A., Tafrov S. T., Heller R. C., Stebbins J., Pillus L., and Sternglanz R.. 2000. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc. Natl. Acad. Sci. USA 97:5807–5811.
  • Laroche, T., Martin S. G., Tsai-Pflugfelder M., and Gasser S. M.. 2000. The dynamics of yeast telomeres and silencing proteins through the cell cycle. J. Struct. Biol. 129:159–174.
  • Lin, S. J., Ford E., Haigis M., Liszt G., and Guarente L.. 2004. Calorie restriction extends yeast life span by lowering the level of NADH. Genes Dev. 18:12–16.
  • Longtine, M. S., McKenzie A., III, Demarini D. J., Shah N. G., Wach A., Brachat A., Philippsen P., and Pringle J. R.. 1998. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14:953–961.
  • Moazed, D. 2001. Common themes in mechanisms of gene silencing. Mol. Cell 8:489–498.
  • Moazed, D., Kistler A., Axelrod A., Rine J., and Johnson A. D.. 1997. Silent information regulator protein complexes in Saccharomyces cerevisiae: a SIR2/SIR4 complex and evidence for a regulatory domain in SIR4 that inhibits its interaction with SIR3. Proc. Natl. Acad. Sci. USA 94:2186–2191.
  • North, B. J., Marshall B. L., Borra M. T., Denu J. M., and Verdin E.. 2003. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11:437–444.
  • Onyango, P., Celic I., McCaffery J. M., Boeke J. D., and Feinberg A. P.. 2002. SIRT3, a human SIR2 homologue, is an NAD-dependent deacetylase localized to mitochondria. Proc. Natl. Acad. Sci. USA 99:13653–13658.
  • Palladino, F., Laroche T., Gilson E., Axelrod A., Pillus L., and Gasser S. M.. 1993. SIR3 and SIR4 proteins are required for the positioning and integrity of yeast telomeres. Cell 75:543–555.
  • Park, H., and Sternglanz R.. 1999. Identification and characterization of the genes for two topoisomerase I-interacting proteins from Saccharomyces cerevisiae. Yeast 15:35–41.
  • Parsons, X. H., Garcia S. N., Pillus L., and Kadonaga J. T.. 2003. Histone deacetylation by Sir2 generates a transcriptionally repressed nucleoprotein complex. Proc. Natl. Acad. Sci. USA 100:1609–1614.
  • Puig, O., Caspary F., Rigaut G., Rutz B., Bouveret E., Bragado-Nilsson E., Wilm M., and Seraphin B.. 2001. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218–229.
  • Rigaut, G., Shevchenko A., Rutz B., Wilm M., Mann M., and Seraphin B.. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17:1030–1032.
  • Rusche, L. N., Kirchmaier A. L., and Rine J.. 2003. The establishment, inheritance, and function of silenced chromatin in Saccharomyces cerevisiae. Annu. Rev. Biochem. 72:481–516.
  • Rusche, L. N., Kirchmaier A. L., and Rine J.. 2002. Ordered nucleation and spreading of silenced chromatin in Saccharomyces cerevisiae. Mol. Biol. Cell 13:2207–2222.
  • Sambrook, J., Fritsch E. F., and Maniatis T.. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Sauve, A. A., Celic I., Avalos J., Deng H., Boeke J. D., and Schramm V. L.. 2001. Chemistry of gene silencing: the mechanism of NAD+-dependent deacetylation reactions. Biochemistry 40:15456–15463.
  • Sauve, A. A., and Schramm V. L.. 2003. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry. Biochemistry 42:9249–9256.
  • Schwer, B., North B. J., Frye R. A., Ott M., and Verdin E.. 2002. The human silent information regulator (Sir)2 homologue hSIRT3 is a mitochondrial nicotinamide adenine dinucleotide-dependent deacetylase. J. Cell Biol. 158:647–657.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Shou, W., Seol J. H., Shevchenko A., Baskerville C., Moazed D., Chen Z. W., Jang J., Charbonneau H., and Deshaies R. J.. 1999. Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97:233–244.
  • Sikorski, R. S., and Hieter P.. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Sinclair, D., Mills K., and Guarente L.. 1998. Aging in Saccharomyces cerevisiae. Annu. Rev. Microbiol. 52:533–560.
  • Sinclair, D. A., and Guarente L.. 1997. Extrachromosomal rDNA circles—a cause of aging in yeast. Cell 91:1033–1042.
  • Smith, J. S., and Boeke J. D.. 1997. An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev. 11:241–254.
  • Smith, J. S., Brachmann C. B., Celic I., Kenna M. A., Muhammad S., Starai V. J., Avalos J. L., Escalante-Semerena J. C., Grubmeyer C., Wolberger C., and Boeke J. D.. 2000. A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc. Natl. Acad. Sci. USA 97:6658–6663.
  • Smith, J. S., Brachmann C. B., Pillus L., and Boeke J. D.. 1998. Distribution of a limited Sir2 protein pool regulates the strength of yeast rDNA silencing and is modulated by Sir4p. Genetics 149:1205–1219.
  • Starai, V. J., Celic I., Cole R. N., Boeke J. D., and Escalante-Semerena J. C.. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390–2392.
  • Straight, A. F., Shou W., Dowd G. J., Turck C. W., Deshaies R. J., Johnson A. D., and Moazed D.. 1999. Net1, a Sir2-associated nucleolar protein required for rDNA silencing and nucleolar integrity. Cell 97:245–256.
  • Stryer, L. 1995. Biochemistry, 4th ed. W. H. Freeman and Co., New York, N.Y.
  • Suka, N., Suka Y., Carmen A. A., Wu J., and Grunstein M.. 2001. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8:473–479.
  • Tanner, K. G., Landry J., Sternglanz R., and Denu J. M.. 2000. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc. Natl. Acad. Sci. USA 97:14178–14182.
  • Tanny, J. C., Dowd G. J., Huang J., Hilz H., and Moazed D.. 1999. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing. Cell 99:735–745.
  • Tanny, J. C., and Moazed D.. 2001. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2: evidence for acetyl transfer from substrate to an NAD breakdown product. Proc. Natl. Acad. Sci. USA 98:415–420.
  • Thompson, J. S., Ling X., and Grunstein M.. 1994. Histone H3 amino terminus is required for telomeric and silent mating locus repression in yeast. Nature 369:245–247.
  • Tong, J. K., Hassig C. A., Schnitzler G. R., Kingston R. E., and Schreiber S. L.. 1998. Chromatin deacetylation by an ATP-dependent nucleosome remodelling complex. Nature 395:917–921.
  • Verdel, A., Jia S., Gerber S., Sugiyama T., Gygi S., Grewal S. I., and Moazed D.. 2004. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676.
  • Visintin, R., Hwang E. S., and Amon A.. 1999. Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398:818–823.
  • Workman, J. L., and Kingston R. E.. 1991. Nucleosome core displacement in vitro via a metastable transcription factor-nucleosome complex. Science 258:1780.
  • Workman, J. L., Taylor I. C. A., Kingston R. E., and Roeder R. G.. 1991. Control of class II gene transcription during in vitro nucleosome assembly. Methods Cell Biol. 35:419–447.
  • Zhang, Y., LeRoy G., Seelig H. P., Lane W. S., and Reinberg D.. 1998. The dermatomyositis-specific autoantigen Mi2 is a component of a complex containing histone deacetylase and nucleosome remodeling activities. Cell 95:279–289.
  • Zhao, K., Chai X., Clements A., and Marmorstein R.. 2003. Structure and autoregulation of the yeast Hst2 homolog of Sir2. Nat. Struct. Biol. 10:864–871.
  • Zhao, K., Chai X., and Marmorstein R.. 2003. Structure of the yeast Hst2 protein deacetylase in ternary complex with 2′-O-acetyl ADP ribose and histone peptide. Structure (Cambridge) 11:1403–1411.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.