7
Views
19
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

BRCA1 Can Modulate RNA Polymerase II Carboxy-Terminal Domain Phosphorylation Levels

, , &
Pages 6947-6956 | Received 05 Mar 2004, Accepted 21 May 2004, Published online: 27 Mar 2023

REFERENCES

  • Abbott, D. W., Thompson M. E., Robinson-Benion C., Tomlinson G., Jensen R. A., and Holt J. T.. 1999. BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J. Biol. Chem. 274:18808–18812.
  • Akoulitchev, S., Makela T. P., Weinberg R. A., and Reinberg D.. 1995. Requirement for TFIIH kinase activity in transcription by RNA polymerase II. Nature 377:557–560.
  • Akoulitchev, S., and Reinberg D.. 1998. The molecular mechanism of mitotic inhibition of TFIIH is mediated by phosphorylation of CDK7. Genes Dev. 12:3541–3550.
  • Anderson, S. F., Schlegel B. P., Nakajima T., Wolpin E. S., and Parvin J. D.. 1998. BRCA1 protein is linked to the RNA polymerase II holoenzyme complex via RNA helicase A. Nat. Genet. 19:254–256.
  • Aprelikova, O., Pace A. J., Fang B., Koller B. H., and Liu E. T.. 2001. BRCA1 is a selective co-activator of 14-3-3 sigma gene transcription in mouse embryonic stem cells. J. Biol. Chem. 276:25647–25650.
  • Araujo, S. J., Tirode F., Coin F., Pospiech H., Syvaoja J. E., Stucki M., Hubscher U., Egly J. M., and Wood R. D.. 2000. Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev. 14:349–359.
  • Blau, J., Xiao H., McCracken S., O'Hare P., Greenblatt J., and Bentley D.. 1996. Three functional classes of transcriptional activation domain. Mol. Cell. Biol. 16:2044–2055.
  • Bregman, D. B., Halaban R., van Gool A. J., Henning K. A., Friedberg E. C., and Warren S. L.. 1996. UV-induced ubiquitination of RNA polymerase II: a novel modification deficient in Cockayne syndrome cells. Proc. Natl. Acad. Sci. USA 93:11586–11590.
  • Busso, D., Keriel A., Sandrock B., Poterszman A., Gileadi O., and Egly J. M.. 2000. Distinct regions of MAT1 regulate cdk7 kinase and TFIIH transcription activities. J. Biol. Chem. 275:22815–22823.
  • Carey, M., Lin Y. S., Green M. R., and Ptashne M.. 1990. A mechanism for synergistic activation of a mammalian gene by GAL4 derivatives. Nature 345:361–364.
  • Carvalho, M. A., Billack B., Chan E., Worley T., Cayanan C., and Monteiro A. N.. 2002. Mutations in the BRCT domain confer temperature sensitivity to BRCA1 in transcription activation. Cancer Biol. Ther. 1:502–508.
  • Chapman, M. S., and Verma I. M.. 1996. Transcriptional activation by BRCA1. Nature 382:678–679.
  • Chapman, R. D., Palancade B., Lang A., Bensaude O., and Eick D.. 2004. The last CTD repeat of the mammalian RNA polymerase II large subunit is important for its stability. Nucleic Acids Res. 32:35–44.
  • Coin, F., and Egly J. M.. 1998. Ten years of TFIIH. Cold Spring Harbor Symp. Quant. Biol. 63:105–110.
  • Dahmus, M. E. 1996. Phosphorylation of mammalian RNA polymerase II. Methods Enzymol. 273:185–193.
  • Deng, C. X., and Brodie S. G.. 2000. Roles of BRCA1 and its interacting proteins. Bioessays 22:728–737.
  • Dvir, A., Conaway J. W., and Conaway R. C.. 2001. Mechanism of transcription initiation and promoter escape by RNA polymerase II. Curr. Opin. Genet. Dev. 11:209–214.
  • Feaver, W. J., Svejstrup J. Q., Henry N. L., and Kornberg R. D.. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109.
  • Fisher, R. P., Jin P., Chamberlin H. M., and Morgan D. O.. 1995. Alternative mechanisms of CAK assembly require an assembly factor or an activating kinase. Cell 83:47–57.
  • Fong, N., Bird G., Vigneron M., and Bentley D. L.. 2003. A 10 residue motif at the C-terminus of the RNA pol II CTD is required for transcription, splicing and 3′ end processing. EMBO J. 22:4274–4282.
  • Garrett, M. D., and Fattaey A.. 1999. CDK inhibition and cancer therapy. Curr. Opin. Genet. Dev. 9:104–111.
  • Garrett, S., Barton W. A., Knights R., Jin P., Morgan D. O., and Fisher R. P.. 2001. Reciprocal activation by cyclin-dependent kinases 2 and 7 is directed by substrate specificity determinants outside the T loop. Mol. Cell. Biol. 21:88–99.
  • Haile, D. T., and Parvin J. D.. 1999. Activation of transcription in vitro by the BRCA1 carboxyl-terminal domain. J. Biol. Chem. 274:2113–2117.
  • Harkin, D. P., Bean J. M., Miklos D., Song Y. H., Truong V. B., Englert C., Christians F. C., Ellisen L. W., Maheswaran S., Oliner J. D., and Haber D. A.. 1999. Induction of GADD45 and JNK/SAPK-dependent apoptosis following inducible expression of BRCA1. Cell 97:575–586.
  • Hartman, A. R., and Ford J. M.. 2003. BRCA1 and p53: compensatory roles in DNA repair. J. Mol. Med.
  • Hartman, A. R., and Ford J. M.. 2002. BRCA1 induces DNA damage recognition factors and enhances nucleotide excision repair. Nat. Genet. 32:180–184.
  • Horton, H. R., Moran L. A., Ochs R. S., Rawn J. D., and Scrimgeour K. G.. 1994. (ed.) Principes de biochimie. DeBoeck Université ed., Brussels, Belgium.
  • Hu, Y. F., Hao Z. L., and Li R.. 1999. Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1. Genes Dev. 13:637–642.
  • Inamoto, S., Segil N., Pan Z. Q., Kimura M., and Roeder R. G.. 1997. The cyclin-dependent kinase-activating kinase (CAK) assembly factor, MAT1, targets and enhances CAK activity on the POU domains of octamer transcription factors. J. Biol. Chem. 272:29852–29858.
  • Ko, L. J., Shieh S. Y., Chen X., Jayaraman L., Tamai K., Taya Y., Prives C., and Pan Z. Q.. 1997. p53 is phosphorylated by CDK7-cyclin H in a p36MAT1-dependent manner. Mol. Cell. Biol. 17:7220–7229.
  • Komarnitsky, P., Cho E. J., and Buratowski S.. 2000. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev. 14:2452–2460.
  • Krum, S. A., Miranda G. A., Lin C., and Lane T. F.. 2003. BRCA1 associates with processive RNA polymerase II. J. Biol. Chem. 278:52012–52020.
  • Larochelle, S., Chen J., Knights R., Pandur J., Morcillo P., Erdjument-Bromage H., Tempst P., Suter B., and Fisher R. P.. 2001. T-loop phosphorylation stabilizes the CDK7-cyclin H-MAT1 complex in vivo and regulates its CTD kinase activity. EMBO J. 20:3749–3759.
  • Lee, T. I., and Young R. A.. 2000. Transcription of eukaryotic protein-coding genes. Annu. Rev. Genet. 34:77–137.
  • MacLachlan, T. K., Somasundaram K., Sgagias M., Shifman Y., Muschel R. J., Cowan K. H., and El-Deiry W. S.. 2000. BRCA1 effects on the cell cycle and the DNA damage response are linked to altered gene expression. J. Biol. Chem. 275:2777–2785.
  • Mallouk, Y., Vayssier-Taussat M., Bonventre J. V., and Polla B. S.. 1999. Heat shock protein 70 and ATP as partners in cell homeostasis. Int. J. Mol. Med. 4:463–474.
  • Manke, I. A., Lowery D. M., Nguyen A., and Yaffe M. B.. 2003. BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science 302:636–639.
  • Marshall, N. F., and Price D. H.. 1995. Purification of P-TEFb, a transcription factor required for the transition into productive elongation. J. Biol. Chem. 270:12335–12338.
  • Monteiro, A. N. 2002. Participation of BRCA1 in the DNA repair response via transcription. Cancer Biol. Ther. 1:187–188.
  • Monteiro, A. N., August A., and Hanafusa H.. 1996. Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proc. Natl. Acad. Sci. USA 93:13595–13599.
  • Nadeau, G., Boufaied N., Moisan A., Lemieux K. M., Cayanan C., Monteiro A. N., and Gaudreau L.. 2000. BRCA1 can stimulate gene transcription by a unique mechanism. EMBO Rep. 1:260–265.
  • O'Brien, K. A., Lemke S. J., Cocke K. S., Rao R. N., and Beckmann R. P.. 1999. Casein kinase 2 binds to and phosphorylates BRCA1. Biochem. Biophys. Res. Commun. 260:658–664.
  • Oelgeschlager, T. 2002. Regulation of RNA polymerase II activity by CTD phosphorylation and cell cycle control. J. Cell Physiol. 190:160–169.
  • Ohkuma, Y., Hashimoto S., Wang C. K., Horikoshi M., and Roeder R. G.. 1995. Analysis of the role of TFIIE in basal transcription and TFIIH-mediated carboxy-terminal domain phosphorylation through structure-function studies of TFIIE-α. Mol. Cell. Biol. 15:4856–4866.
  • Okamoto, T., Yamamoto S., Watanabe Y., Ohta T., Hanaoka F., Roeder R. G., and Ohkuma Y.. 1998. Analysis of the role of TFIIE in transcriptional regulation through structure-function studies of the TFIIEbeta subunit. J. Biol. Chem. 273:19866–19876.
  • Paull, T. T., Cortez D., Bowers B., Elledge S. J., and Gellert M.. 2001. Direct DNA binding by Brca1. Proc. Natl. Acad. Sci. USA 98:6086–6091.
  • Ptashne, M., and Gann A.. 1997. Transcriptional activation by recruitment. Nature 386:569–577.
  • Ratner, J. N., Balasubramanian B., Corden J., Warren S. L., and Bregman D. B.. 1998. Ultraviolet radiation-induced ubiquitination and proteasomal degradation of the large subunit of RNA polymerase II. Implications for transcription-coupled DNA repair. J. Biol. Chem. 273:5184–5189.
  • Rickert, P., Corden J. L., and Lees E.. 1999. Cyclin C/CDK8 and cyclin H/CDK7/p36 are biochemically distinct CTD kinases. Oncogene 18:1093–1102.
  • Rossignol, M., Kolb-Cheynel I., and Egly J. M.. 1997. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J. 16:1628–1637.
  • Scully, R., Anderson S. F., Chao D. M., Wei W., Ye L., Young R. A., Livingston D. M., and Parvin J. D.. 1997. BRCA1 is a component of the RNA polymerase II holoenzyme. Proc. Natl. Acad. Sci. USA 94:5605–5610.
  • Solomon, M. J., Harper J. W., and Shuttleworth J.. 1993. CAK, the p34cdc2 activating kinase, contains a protein identical or closely related to p40MO15. EMBO J. 12:3133–3142.
  • Somasundaram, K. 2003. Breast cancer gene 1 (BRCA1): role in cell cycle regulation and DNA repair—perhaps through transcription. J. Cell Biochem. 88:1084–1091.
  • Somasundaram, K., Zhang H., Zeng Y. X., Houvras Y., Peng Y., Wu G. S., Licht J. D., Weber B. L., and El-Deiry W. S.. 1997. Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature 389:187–190.
  • Sun, X., Zhang Y., Cho H., Rickert P., Lees E., Lane W., and Reinberg D.. 1998. NAT, a human complex containing Srb polypeptides that functions as a negative regulator of activated transcription. Mol. Cell 2:213–222.
  • Talukder, A. H., Mishra S. K., Mandal M., Balasenthil S., Mehta S., Sahin A. A., Barnes C. J., and Kumar R.. 2003. MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. J. Biol. Chem. 278:11676–11685.
  • Wallenfang, M. R., and Seydoux G.. 2002. cdk-7 is required for mRNA transcription and cell cycle progression in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. USA 99:5527–5532.
  • Welcsh, P. L., Lee M. K., Gonzalez-Hernandez R. M., Black D. J., Mahadevappa M., Swisher E. M., Warrington J. A., and King M. C.. 2002. BRCA1 transcriptionally regulates genes involved in breast tumorigenesis. Proc. Natl. Acad. Sci. USA 99:7560–7565.
  • Whitmarsh, A. J., and Davis R. J.. 2001. Analyzing JNK and p38 mitogen-activated protein kinase activity. Methods Enzymol. 332:319–336.
  • Williams, R. S., Chasman D., Hau D., Hui B., Lau A., and Glover J. N.. 2003. Detection of protein folding defects caused by BRCA1-BRCT truncation and missense mutations. J. Biol. Chem. 278:53007–53016.
  • Williams, R. S., Green R., and Glover J. N.. 2001. Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1. Nat. Struct. Biol. 8:838–842.
  • Williamson, E. A., Dadmanesh F., and Koeffler H. P.. 2002. BRCA1 transactivates the cyclin-dependent kinase inhibitor p27(Kip1). Oncogene 21:3199–3206.
  • Xu, X., Nakano T., Wick S., Dubay M., and Brizuela L.. 1999. Mechanism of Cdk2/Cyclin E inhibition by p27 and p27 phosphorylation. Biochemistry 38:8713–8722.
  • Yamane, K., and Tsuruo T.. 1999. Conserved BRCT regions of TopBP1 and of the tumor suppressor BRCA1 bind strand breaks and termini of DNA. Oncogene 18:5194–5203.
  • Yankulov, K. Y., and Bentley D. L.. 1997. Regulation of CDK7 substrate specificity by MAT1 and TFIIH. EMBO J. 16:1638–1646.
  • Yu, X., Chini C. C., He M., Mer G., and Chen J.. 2003. The BRCT domain is a phospho-protein binding domain. Science 302:639–642.
  • Yudkovsky, N., Ranish J. A., and Hahn S.. 2000. A transcription reinitiation intermediate that is stabilized by activator. Nature 408:225–229.
  • Zawel, L., Lu H., Cisek L. J., Corden J. L., and Reinberg D.. 1993. The cycling of RNA polymerase II during transcription. Cold Spring Harbor Symp. Quant. Biol. 58:187–198.
  • Zhang, J., and Corden J. L.. 1991. Phosphorylation causes a conformational change in the carboxyl-terminal domain of the mouse RNA polymerase II largest subunit. J. Biol. Chem. 266:2297–2302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.