57
Views
87
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Upstream Regulatory Role for XIAP in Receptor-Mediated Apoptosis

, , &
Pages 7003-7014 | Received 19 Dec 2003, Accepted 26 Apr 2004, Published online: 27 Mar 2023

REFERENCES

  • Acehan, D., Jiang X., Morgan D. G., Heuser J. E., Wang X., and Akey C. W.. 2002. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol. Cell 9:423–432.
  • Adrain, C., Creagh E. M., and Martin S. J.. 2001. Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. EMBO J. 20:6627–6636.
  • Amarante-Mendes, G. P., Finucane D. M., Martin S. J., Cotter T. G., Salvesen G. S., and Green D. R.. 1998. Anti-apoptotic oncogenes prevent caspase-dependent and independent commitment for cell death. Cell Death Differ. 5:298–306.
  • Birkey Reffey, S., Wurthner J. U., Parks W. T., Roberts A. B., and Duckett C. S.. 2001. X-linked inhibitor of apoptosis protein functions as a cofactor in transforming growth factor-β signaling. J. Biol. Chem. 276:26542–26549.
  • Boatright, K. M., Renatus M., Scott F. L., Sperandio S., Shin H., Pedersen I. M., Ricci J. E., Edris W. A., Sutherlin D. P., Green D. R., and Salvesen G. S.. 2003. A unified model for apical caspase activation. Mol. Cell 11:529–541.
  • Boise, L. H., and Thompson C. B.. 1997. Bcl-xL can inhibit apoptosis in cells that have undergone Fas-induced protease activation. Proc. Natl. Acad. Sci. USA 94:3759–3764.
  • Budihardjo, I., Oliver H., Lutter M., Luo X., and Wang X.. 1999. Biochemical pathways of caspase activation during apoptosis. Annu. Rev. Cell Dev. Biol. 15:269–290.
  • Cain, K., Bratton S. B., Langlais C., Walker G., Brown D. G., Sun X. M., and Cohen G. M.. 2000. Apaf-1 oligomerizes into biologically active approximately 700-kDa and inactive approximately 1.4-MDa apoptosome complexes. J. Biol. Chem. 275:6067–6070.
  • Cain, K., Brown D. G., Langlais C., and Cohen G. M.. 1999. Caspase activation involves the formation of the aposome, a large (approximately 700 kDa) caspase-activating complex. J. Biol. Chem. 274:22686–22692.
  • Chai, J., Du C., Wu J. W., Kyin S., Wang X., and Shi Y.. 2000. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406:855–862.
  • Chai, J., Shiozaki E., Srinivasula S. M., Wu Q., Dataa P., Alnemri E. S., and Shi Y.. 2001. Structural basis of caspase-7 inhibition by XIAP. Cell 104:769–780.
  • Clifford, B., Beljin M., Stark G. R., and Taylor W. R.. 2003. G2 arrest in response to topoisomerase II inhibitors: the role of p53. Cancer Res. 63:4074–4081.
  • Cryns, V., and Yuan J.. 1998. Proteases to die for. Genes Dev. 12:1551–1570.
  • Deng, Y., Lin Y., and Wu X.. 2002. TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 16:33–45.
  • Deveraux, Q. L., Leo E., Stennicke H. R., Welsh K., Salvesen G. S., and Reed J. C.. 1999. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J. 18:5242–5251.
  • Deveraux, Q. L., and Reed J. C.. 1999. IAP family proteins-suppressors of apoptosis. Genes Dev. 13:239–252.
  • Deveraux, Q. L., Roy N., Stennicke H. R., Van Arsdale T., Zhou Q., Srinivasula S. M., Alnemri E. S., Salvesen G. S., and Reed J. C.. 1998. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 17:2215–2223.
  • Deveraux, Q. L., Takahashi R., Salvesen G. S., and Reed J. C.. 1997. X-linked IAP is a direct inhibitor of cell-death proteases. Nature 388:300–304.
  • Du, C., Fang M., Li Y., Li L., and Wang X.. 2000. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42.
  • Duckett, C. S., Li F., Wang Y., Tomaselli K. J., Thompson C. B., and Armstrong R. C.. 1998. Human IAP-like protein regulates programmed cell death downstream of Bcl-xL and cytochrome c. Mol. Cell. Biol. 18:608–615.
  • Duckett, C. S., Nava V. E., Gedrich R. W., Clem R. J., Van Dongen J. L., Gilfillan M. C., Shiels H., Hardwick J. M., and Thompson C. B.. 1996. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15:2685–2694.
  • Engels, I. H., Stepczynska A., Stroh C., Lauber K., Berg C., Schwenzer R., Wajant H., Janicke R. U., Porter A. G., Belka C., Gregor M., Schulze-Osthoff K., and Wesselborg S.. 2000. Caspase-8/FLICE functions as an executioner caspase in anticancer drug-induced apoptosis. Oncogene 19:4563–4573.
  • Ferreira, C. G., Span S. W., Peters G. J., Kruyt F. A., and Giaccone G.. 2000. Chemotherapy triggers apoptosis in a caspase-8-dependent and mitochondria-controlled manner in the non-small cell lung cancer cell line NCI-H460. Cancer Res. 60:7133–7141.
  • Fujita, E., Egashira J., Urase K., Kuida K., and Momoi T.. 2001. Caspase-9 processing by caspase-3 via a feedback amplification loop in vivo. Cell Death Differ. 8:335–344.
  • Gross, A., Yin X. M., Wang K., Wei M. C., Jockel J., Milliman C., Erdjument-Bromage H., Tempst P., and Korsmeyer S. J.. 1999. Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J. Biol. Chem. 274:1156–1163.
  • Hegde, R., Srinivasula S. M., Zhang Z., Wassell R., Mukattash R., Cilenti L., DuBois G., Lazebnik Y., Zervos A. S., Fernandes-Alnemri T., and Alnemri E. S.. 2001. Identification of Omi/HtrA2 as a mitochondrial apoptotic serine protease that disrupts IAP-caspase interaction. J. Biol. Chem. 277:432–438.
  • Holcik, M., and Korneluk R. G.. 2001. XIAP, the guardian angel. Nat. Rev. Mol. Cell Biol. 2:550–556.
  • Hu, S., and Yang X.. 2003. Cellular inhibitor of apoptosis 1 and 2 are ubiquitin ligases for the apoptosis inducer Smac/DIABLO. J. Biol. Chem. 278:10055–10060.
  • Huang, H.-K., Joazeiro C. A. P., Bonfoco E., Kamada S., Leverson J. D., and Hunter T.. 2000. The inhibitor of apoptosis, cIAP2, functions as a ubiquitin-protein ligase and promotes in vitro monoubiquitination of caspases 3 and 7. J. Biol. Chem. 275:26661–26664.
  • Huang, Y., Park Y. C., Rich R. L., Segal D., Myszka D. G., and Wu H.. 2001. Structural basis of caspase inhibition by XIAP. Differential roles of the linker versus the BIR domain. Cell 104:781–790.
  • Johnson, B. W., Cepero E., and Boise L. H.. 2000. Bcl-xL inhibits cytochrome c release but not mitochondrial depolarization during the activation of multiple death pathways by tumor necrosis factor-α. J. Biol. Chem. 275:31546–31553.
  • Kahns, S., Kalai M., Jakobsen L. D., Clark B. F., Vandenabeele P., and Jensen P. H.. 2003. Caspase-1 and caspase-8 cleave and inactivate cellular parkin. J. Biol. Chem. 278:23376–23380.
  • Kerr, J. F., Wyllie A. H., and Currie A. R.. 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–257.
  • Komoriya, A., Packard B. Z., Brown M. J., Wu M. L., and Henkart P. A.. 2000. Assessment of caspase activities in intact apoptotic thymocytes using cell-permeable fluorogenic caspase substrates. J. Exp. Med. 191:1819–1828.
  • Kuwana, T., Smith J. J., Muzio M., Dixit V., Newmeyer D. D., and Kornbluth S.. 1998. Apoptosis induction by caspase-8 is amplified through the mitochondrial release of cytochrome c. J. Biol. Chem. 273:16589–16594.
  • Leverkus, M., Sprick M. R., Wachter T., Mengling T., Baumann B., Serfling E., Brocker E. B., Goebeler M., Neumann M., and Walczak H.. 2003. Proteasome inhibition results in TRAIL sensitization of primary keratinocytes by removing the resistance-mediating block of effector caspase maturation. Mol. Cell. Biol. 23:777–790.
  • Li, H., Zhu H., Xu C. J., and Yuan J.. 1998. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501.
  • Li, P., Nijhawan D., Budihardjo I., Srinivasula S. M., Ahmad M., Alnemri E. S., and Wang X.. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489.
  • Li, S., Zhao Y., He X., Kim T. H., Kuharsky D. K., Rabinowich H., Chen J., Du C., and Yin X. M.. 2002. Relief of extrinsic pathway inhibition by the bid-dependent mitochondrial release of Smac in Fas-mediated hepatocyte apoptosis. J. Biol. Chem. 277:26912–26920.
  • Li, X., Yang Y., and Ashwell J. D.. 2002. TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature 416:345–347.
  • Liston, P., Roy N., Tamai K., Lefebvre C., Baird S., Cherton-Horvat G., Farahani R., McLean M., Ikeda J.-E., MacKenzie A., and Korneluk R. G.. 1996. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 379:349–353.
  • Liu, Z., Sun C., Olejniczak E. T., Meadows R. P., Betz S. F., Oost T., Herrmann J., Wu J. C., and Fesik S. W.. 2000. Structural basis for binding of Smac/DIABLO to the XIAP BIR3 domain. Nature 408:1004–1008.
  • Luo, X., Budihardjo I., Zou H., Slaughter C., and Wang X.. 1998. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490.
  • Martins, L. M., Iaccarino I., Tenev T., Gschmeissner S., Totty N. F., Lemoine N. R., Savopoulos J., Gray C. W., Creasy C. L., Dingwall C., and Downward J.. 2001. The serine protease Omi/HtrA2 regulates apoptosis by binding XIAP through a Reaper-like motif. J. Biol. Chem. 277:439–444.
  • Medema, J. P., Scaffidi C., Kischkel F. C., Shevchenko A., Mann M., Krammer P. H., and Peter M. E.. 1997. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J. 16:2794–2804.
  • Mootha, V. K., Wei M. C., Buttle K. F., Scorrano L., Panoutsakopoulou V., Mannella C. A., and Korsmeyer S. J.. 2001. A reversible component of mitochondrial respiratory dysfunction in apoptosis can be rescued by exogenous cytochrome c. EMBO J. 20:661–671.
  • Nagata, S. 1996. Apoptosis: telling cells their time is up. Curr. Biol. 6:1241–1243.
  • Nicholson, D. W. 1999. Caspase structure, proteolytic substrates, and function during apoptotic cell death. Cell Death Differ. 6:1028–1042.
  • Richter, B. W. M., Mir S. S., Eiben L. J., Lewis J., Reffey S. B., Frattini A., Tian L., Frank S., Youle R. J., Nelson D. L., Notarangelo L. D., Vezzoni P., Fearnhead H. O., and Duckett C. S.. 2001. Molecular cloning of ILP-2, a novel member of the inhibitor of apoptosis protein (IAP) family. Mol. Cell. Biol. 21:4292–4301.
  • Riedl, S. J., Renatus M., Schwarzenbacher R., Zhou Q., Sun C., Fesik S. W., Liddington R. C., and Salvesen G. S.. 2001. Structural basis for the inhibition of caspase-3 by XIAP. Cell 104:791–800.
  • Scaffidi, C., Fulda S., Srinivasan A., Friesen C., Li F., Tomaselli K. J., Debatin K.-M., Krammer P. H., and Peter M. E.. 1998. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17:1675–1687.
  • Shiozaki, E. N., Chai J., Rigotti D. J., Riedl S. J., Li P., Srinivasula S. M., Alnemri E. S., Fairman R., and Shi Y.. 2003. Mechanism of XIAP-mediated inhibition of caspase-9. Mol. Cell 11:519–527.
  • Silke, J., Ekert P. G., Day C. L., Hawkins C. J., Baca M., Chew J., Pakusch M., Verhagen A. M., and Vaux D. L.. 2001. Direct inhibition of caspase 3 is dispensable for the anti-apoptotic activity of XIAP. EMBO J. 20:3114–3123.
  • Silke, J., Hawkins C. J., Ekert P. G., Chew J., Day C. L., Pakusch M., Verhagen A. M., and Vaux D. L.. 2002. The anti-apoptotic activity of XIAP is retained upon mutation of both the caspase 3- and caspase 9-interacting sites. J. Cell Biol. 157:115–124.
  • Slee, E. A., Harte M. T., Kluck R. M., Wolf B. B., Casiano C. A., Newmeyer D. D., Wang H. G., Reed J. C., Nicholson D. W., Alnemri E. S., Green D. R., and Martin S. J.. 1999. Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J. Cell Biol. 144:281–292.
  • Slee, E. A., Keogh S. A., and Martin S. J.. 2000. Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ. 7:556–565.
  • Srinivasula, S. M., Ahmad M., Fernandes-Alnemri T., and Alnemri E. S.. 1998. Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol. Cell 1:949–957.
  • Srinivasula, S. M., Gupta S., Datta P., Zhang Z., Hegde R., Cheong N., Fernandes-Alnemri T., and Alnemri E. S.. 2003. Inhibitor of apoptosis proteins are substrates for the mitochondrial serine protease Omi/HtrA2. J. Biol. Chem. 278:31469–31472.
  • Srinivasula, S. M., Hegde R., Saleh A., Datta P., Shiozaki E., Chai J., Lee R. A., Robbins P. D., Fernandes-Alnemri T., Shi Y., and Alnemri E. S.. 2001. A conserved XIAP-interaction motif in caspase-9 and Smac/DIABLO regulates caspase activity and apoptosis. Nature 410:112–116.
  • Stennicke, H. R., Deveraux Q. L., Humke E. W., Reed J. C., Dixit V. M., and Salvesen G. S.. 1999. Caspase-9 can be activated without proteolytic processing. J. Biol. Chem. 274:8359–8362.
  • Sun, C., Cai M., Meadows R. P., Xu N., Gunasekera A. H., Herrmann J., Wu J. C., and Fesik S. W.. 2000. NMR structure and mutagenesis of the third BIR domain of the inhibitor of apoptosis protein XIAP. J. Biol. Chem. 275:33777–33781.
  • Sun, X. M., Bratton S. B., Butterworth M., Macfarlane M., and Cohen G. M.. 2002. Bcl-2 and Bcl-xL inhibit CD95-mediated apoptosis by preventing mitochondrial release of Smac/DIABLO and subsequent inactivation of XIAP. J. Biol. Chem. 277:11345–11351.
  • Tafani, M., Karpinich N. O., Hurster K. A., Pastorino J. G., Schneider T., Russo M. A., and Farber J. L.. 2002. Cytochrome c release upon Fas receptor activation depends on translocation of full-length Bid and the induction of the mitochondrial permeability transition. J. Biol. Chem. 277:10073–10082.
  • Tamm, I., Trepel M., Cardo-Vila M., Sun Y., Welsh K., Cabezas E., Swatterthwait A., Arap W., Reed J. C., and Pasqualini R.. 2003. Peptides targeting caspase inhibitors. J. Biol. Chem. 278:14401–14405.
  • Thompson, C. B. 1995. Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462.
  • Thornberry, N. A., and Lazebnik Y.. 1998. Caspases: enemies within. Science 281:1312–1316.
  • Uren, A., Pakusch M., Hawkins C., Puls K. L., and Vaux D. L.. 1996. Cloning and expression of apoptosis inhibitory proteins homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc. Natl. Acad. Sci. USA. 93:4974–4978.
  • Vaux, D. L., Haecker G., and Strasser A.. 1994. An evolutionary perspective on apoptosis. Cell 76:777–779.
  • Verhagen, A. M., Ekert P. G., Pakusch M., Silke J., Connolly L. M., Reid G. E., Moritz R. L., Simpson R. J., and Vaux D. L.. 2000. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102:43–53.
  • Verhagen, A. M., Silke J., Ekert P. G., Pakusch M., Kaufmann H., Connolly L. M., Day C. L., Tikoo A., Burke R., Wrobel C., Moritz R. L., Simpson R. J., and Vaux D. L.. 2001. HtrA2 promotes cell death through its serine protease activity and its ability to antagonise inhibitor of apoptosis proteins. J. Biol. Chem. 277:445–454.
  • Wagenknecht, B., Glaser T., Naumann U., Kugler S., Isenmann S., Bahr M., Korneluk R., Liston P., and Weller M.. 1999. Expression and biological activity of X-linked inhibitor of apoptosis (XIAP) in human malignant glioma. Cell Death Differ. 6:370–376.
  • Waterhouse, N. J., Goldstein J. C., von Ahsen O., Schuler M., Newmeyer D. D., and Green D. R.. 2001. Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J. Cell Biol. 153:319–328.
  • Yang, Q. H., Church-Hajduk R., Ren J., Newton M. L., and Du C.. 2003. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev. 17:1487–1496.
  • Yang, Y., Fang S., Jensen J. P., Weissman A. M., and Ashwell J. D.. 2000. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–877.
  • Yin, X. M., Wang K., Gross A., Zhao Y., Zinkel S., Klocke B., Roth K. A., and Korsmeyer S. J.. 1999. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400:886–891.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.