349
Views
1,653
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

Oxidative Stress Sensor Keap1 Functions as an Adaptor for Cul3-Based E3 Ligase To Regulate Proteasomal Degradation of Nrf2

, , , , , , & show all
Pages 7130-7139 | Received 29 Apr 2004, Accepted 20 May 2004, Published online: 27 Mar 2023

REFERENCES

  • Cope, G. A., and Deshaies R. J.. 2003. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114:663–671.
  • Cullinan, S. B., Zhang D., Hannink M., Arvisais E., Kaufman R. J., and Diehl J. A.. 2003. Nrf2 is a direct PERK substrate and effector of PERK-dependent cell survival. Mol. Cell. Biol. 23:7198–7209.
  • Dinkova-Kostova, A. T., Holtzclaw W. D., Cole R. N., Itoh K., Wakabayashi N., Katoh Y., Yamamoto M., and Talalay P.. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 99:11908–11913.
  • Furukawa, M., He Y. J., Borchers C., and Xiong Y.. 2003. Targeting of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases. Nat. Cell Biol. 5:1001–1007.
  • Geyer, R., Wee S., Anderson S., Yates J., and Wolf D. A.. 2003. BTB/POZ domain proteins are putative substrate adaptors for cullin 3 ubiquitin ligases. Mol. Cell 12:783–790.
  • Hayes, J. D., Chanas S. A., Henderson C. J., McMahon M., Sun C., Moffat G. J., Wolf C. R., and Yamamoto M.. 2000. The Nrf2 transcription factor contributes both to the basal expression of glutathione S-transferases in mouse liver and to their induction by the chemopreventive synthetic antioxidants, butylated hydroxyanisole and ethoxyquin. Biochem. Soc. Trans. 28:33–41.
  • Hershko, A., and Ciechanover A.. 1998. The ubiquitin system. Annu. Rev. Biochem. 67:425–479.
  • Hori, T., Osaka F., Chiba T., Miyamoto C., Okabayashi K., Shimbara N., Kato S., and Tanaka K.. 1999. Covalent modification of all members of human cullin family proteins by NEDD8. Oncogene 18:6829–6834.
  • Itoh, K., Wakabayashi N., Katoh Y., Ishii T., O'Connor T., and Yamamoto M.. 2003. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells 8:379–391.
  • Itoh, K., Ishii T., Wakabayashi N., and Yamamoto M.. 1999. Regulatory mechanisms of cellular response to oxidative stress. Free Radic. Res. 31:319–324.
  • Kaelin, W. G., Jr. 2002. Molecular basis of the VHL hereditary cancer syndrome. Nat. Rev. Cancer 2:673–682.
  • Kang, M.-I., Kobayashi A., Wakabayashi N., Kim S. G., and Yamamoto M.. 2004. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc. Natl. Acad. Sci. USA 101:2046–2051.
  • Kobayashi, M., Itoh K., Suzuki T., Osanai H., Nishikawa K., Katoh Y., Takagi Y., and Yamamoto M.. 2002. Identification of the interactive interface and phylogenic conservation of the Nrf2-Keap1 system. Genes Cells 7:807–820.
  • Levonen, A. L., Landar A., Ramachandran A., Ceaser E. K., Dickinson D. A., Zanoni G., Morrow J. D., and Darley-Usmar V. M.. 2004. Cellular mechanisms of redox cell signaling: role of cysteine modification in controlling antioxidant defenses in response to electrophilic lipid oxidation products. Biochem. J. 378:373–382.
  • McMahon, M., Itoh K., Yamamoto M., and Hayes J. D.. 2003. Keap1-dependent proteasomal degradation of transcription factor Nrf2 contributes to the negative regulation of antioxidant response element-driven gene expression. J. Biol. Chem. 278:21592–21600.
  • Nguyen, T., Sherratt P. J., and Pickett C. B.. 2003. Regulatory mechanisms controlling gene expression mediated by the antioxidant response element. Annu. Rev. Pharmacol. Toxicol. 43:233–260.
  • Nguyen, T., Sherratt P. J., Huang H. C., Yang C. S., and Pickett C. B.. 2003. Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278:4536–4541.
  • Oyake, T., Itoh K., Motohashi H., Hayashi N., Hoshino H., Nishizawa M., Yamamoto M., and Igarashi K.. 1996. Bach proteins belong to a novel family of BTB-basic leucine zipper transcription factors that interact with MafK and regulate transcription through the NF-E2 site. Mol. Cell. Biol. 16:6083–6095.
  • Pickart, C. M. 2001. Ubiquitin enters the new millennium. Mol. Cell 8:499–504.
  • Pintard, L., Kurz T., Glaser S., Willis J. H., Peter M., and Bowerman B.. 2003. Neddylation and deneddylation of CUL-3 is required to target MEI-1/katanin for degradation at the meiosis-to-mitosis transition in C. elegans. Curr. Biol. 13:911–921.
  • Pintard, L., Willis J. H., Willems A., Johnson J. L., Srayko M., Kurz T., Glaser S., Mains P. E., Tyers M., Bowerman B., and Peter M.. 2003. The BTB protein MEL-26 is a substrate-specific adaptor of the CUL-3 ubiquitin-ligase. Nature 425:311–316.
  • Sekhar, K. R., Soltaninassab S. R., Borrelli M. J., Xu Z. Q., Meredith M. J., Domann F. E., and Freeman M. L.. 2000. Inhibition of the 26S proteasome induces expression of GLCLC, the catalytic subunit for gamma-glutamylcysteine synthetase. Biochem. Biophys. Res. Commun. 270:311–317.
  • Semenza, G. L. 2001. HIF-1 and mechanisms of hypoxia sensing. Curr. Opin. Cell Biol. 13:167–171.
  • Singer, J. D., Gurian-West M., Clurman B., and Roberts J. M.. 1999. Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 13:2375–2387.
  • Stewart, D., Killeen E., Naquin R., Alam S., and Alam J.. 2003. Degradation of transcription factor Nrf2 via the ubiquitin-proteasome pathway and stabilization by cadmium. J. Biol. Chem. 278:2396–2402.
  • Treier, M., Staszewski L. M., and Bohmann D.. 1994. Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain. Cell 78:787–798.
  • Wakabayashi, N., Dinkova-Kostova A. T., Holtzclaw W. D., Kang M-I., Kobayashi A., Yamamoto M., Kensler T. W., and Talalay P.. 2004. Protection against electrophile and oxidant stress by induction of the phase 2 response: Fate of cysteines of the Keap1 sensor modified by inducers. Proc. Natl. Acad. Sci. USA 101:2040–2045.
  • Wall, M. A., Coleman D. E., Lee E., Iniguez-Lluhi J. A., Posner B. A., Gilman A. G., and Sprang S. R.. 1995. The structure of the G protein heterotrimer Gi alpha 1 beta 1 gamma 2. Cell 83:1047–1058.
  • Wolf, D. A., Zhou C., and Wee S.. 2003. The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat. Cell Biol. 5:1029–1033.
  • Xu, L., Wei Y., Reboul J., Vaglio P., Shin T. H., Vidal M., Elledge S. J., and Harper J. W.. 2003. BTB proteins are substrate-specific adaptors in an SCF-like modular ubiquitin ligase containing CUL-3. Nature 425:316–321.
  • Zhang, D. D., and Hannink M.. 2003. Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol. Cell. Biol. 23:8137–8151.
  • Zheng, N., Schulman B. A., Song L., Miller J. J., Jeffrey P. D., Wang P., Chu C., Koepp D. M., Elledge S. J., Pagano M., Conaway R. C., Conaway J. W., Harper J. W., and Pavletich N. P.. 2002. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–709.
  • Zipper, L. M., and Mulcahy R. T.. 2002. The Keap1 BTB/POZ dimerization function is required to sequester Nrf2 in cytoplasm. J. Biol. Chem. 277:36544–36552.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.