21
Views
138
CrossRef citations to date
0
Altmetric
Cell and Organelle Structure and Assembly

Scrambled Prion Domains Form Prions and Amyloid

, &
Pages 7206-7213 | Received 09 Mar 2004, Accepted 13 May 2004, Published online: 27 Mar 2023

REFERENCES

  • Bauer, H. H., Aebi U., Haner M., Hermann R., Muller M., and Merkle H. P.. 1995. Architecture and polymorphism of fibrillar supramolecular assemblies produced by in vitro aggregation of human calcitonin. J. Struct. Biol. 115:1–15.
  • Baxa, U., Speransky V., Steven A. C., and Wickner R. B.. 2002. Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc. Natl. Acad. Sci. USA 99:5253–5260.
  • Baxa, U., Taylor K. L., Wall J. S., Simon M. N., Cheng N., Wickner R. B., and Steven A. C.. 2003. Architecture of Ure2p prion filaments: the N-terminal domains form a central core fiber. J. Biol. Chem. 278:43717–43727.
  • Borchsenius, A. S., Wegrzyn R. D., Newnam G. P., Inge-Vechtomov S. G., and Chernoff Y. O.. 2001. Yeast prion protein derivative defective in aggregate shearing and production of new “seeds. ” EMBO J. 20:6683–6691.
  • Bousset, L., Belrhali H., Janin J., Melki R., and Morera S.. 2001. Structure of the globular region of the prion protein Ure2 from the yeast Saccharomyces cerevisiae. Structure 9:39–46.
  • Bousset, L., Thomson N. H., Radford S. E., and Melki R.. 2002. The yeast prion Ure2p retains its native alpha-helical conformation upon assembly into protein fibrils in vitro. EMBO J. 21:2903–2911.
  • Chiti, F., Stefani M., Taddei N., Ramponi G., and Dobson C. M.. 2003. Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424:805–808.
  • Conde, J., and Fink G. R.. 1976. A mutant of Saccharomyces cerevisiae defective for nuclear fusion. Proc. Natl. Acad. Sci. USA 73:3651–3655.
  • Cooper, T. G. 2002. Transmitting the signal of excess nitrogen in Saccharomyces cerevisiae from the Tor proteins to the GATA factors: connecting the dots. FEMS Microbiol. Rev. 26:223–238.
  • Cox, B. S. 1965. PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 26:211–232.
  • DePace, A. H., Santoso A., Hillner P., and Weissman J. S.. 1998. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93:1241–1252.
  • Derkatch, I. L., Bradley M. E., Hong J. Y., and Liebman S. W.. 2001. Prions affect the appearance of other prions: the story of [PIN(+)]. Cell 106:171–182.
  • Dobson, C. M. 1999. Protein misfolding, evolution, and disease. Trends Biochem. Sci. 24:329–332.
  • Doel, S. M., McCready S. J., Nierras C. R., and Cox B. S.. 1994. The dominant PNM2− mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137:659–670.
  • Edskes, H. K., Gray V. T., and Wickner R. B.. 1999. The [URE3] prion is an aggregated form of Ure2p that can be cured by overexpression of Ure2p fragments. Proc. Natl. Acad. Sci. USA 96:1498–1503.
  • Edskes, H. K., and Wickner R. B.. 2000. A protein required for prion generation: [URE3] induction requires the Ras-regulated Mks1 protein. Proc. Natl. Acad. Sci. USA 97:6625–6629.
  • Ferreira, P. C., Ness F., Edwards S. R., Cox B. S., and Tuite M. F.. 2001. The elimination of the yeast [PSI+] prion by guanidine hydrochloride is the result of Hsp104 inactivation. Mol. Microbiol. 40:1357–1369.
  • Goldsbury, C. S., Cooper G. J., Goldie K. N., Muller S. A., Saafi E. L., Gruijters W. T., Misur M. P., Engel A., Aebi U., and Kistler J.. 1997. Polymorphic fibrillar assembly of human amylin. J. Struct. Biol. 119:17–27.
  • Hurle, M. R., Helms L. R., Li L., Chan W., and Wetzel R.. 1994. A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc. Natl. Acad. Sci. USA 91:5446–5450.
  • Jung, G., Jones G., and Masison D. C.. 2002. Amino acid residue 184 of yeast Hsp104 chaperone is critical for prion-curing by guanidine, prion propagation, and thermotolerance. Proc. Natl. Acad. Sci. USA 99:9936–9941.
  • Jung, G., and Masison D. C.. 2001. Guanidine hydrochloride inhibits Hsp104 activity in vivo: a possible explanation for its effect in curing yeast prions. Curr. Microbiol. 43:7–10.
  • Kelly, J. W. 1998. The alternative conformations of amyloidogenic proteins and their multi-step assembly pathways. Curr. Opin. Struct. Biol. 8:101–106.
  • Kisilevsky, R., and Fraser P. E.. 1997. A beta amyloidogenesis: unique, or variation on a systemic theme? Crit. Rev. Biochem. Mol. Biol. 32:361–404.
  • Lacroute, F. 1971. Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J. Bacteriol. 106:519–522.
  • Liebman, S. W., and Derkatch I. L.. 1999. The yeast [PSI+] prion: making sense of nonsense. J. Biol. Chem. 274:1181–1184.
  • Liemann, S., and Glockshuber R.. 1999. Influence of amino acid substitutions related to inherited human prion diseases on the thermodynamic stability of the cellular prion protein. Biochemistry 38:3258–3267.
  • Maddelein, M. L., and Wickner R. B.. 1999. Two prion-inducing regions of Ure2p are nonoverlapping. Mol. Cell. Biol. 19:4516–4524.
  • Masison, D. C., Maddelein M. L., and Wickner R. B.. 1997. The prion model for [URE3] of yeast: spontaneous generation and requirements for propagation. Proc. Natl. Acad. Sci. USA 94:12503–12508.
  • Masison, D. C., and Wickner R. B.. 1995. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270:93–95.
  • McCutchen, S. L., Lai Z., Miroy G. J., Kelly J. W., and Colon W.. 1995. Comparison of lethal and nonlethal transthyretin variants and their relationship to amyloid disease. Biochemistry 34:13527–13536.
  • Michelitsch, M. D., and Weissman J. S.. 2000. A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc. Natl. Acad. Sci. USA 97:11910–11915.
  • Ness, F., Ferreira P., Cox B. S., and Tuite M. F.. 2002. Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol. Cell. Biol. 22:5593–5605.
  • Ochman, H., Gerber A. S., and Hartl D. L.. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120:621–623.
  • Paushkin, S. V., Kushnirov V. V., Smirnov V. N., and Ter-Avanesyan M. D.. 1996. Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J. 15:3127–3134.
  • Perrett, S., Freeman S. J., Butler P. J., and Fersht A. R.. 1999. Equilibrium folding properties of the yeast prion protein determinant Ure2. J. Mol. Biol. 290:331–345.
  • Ridley, S. P., Sommer S. S., and Wickner R. B.. 1984. Superkiller mutations in Saccharomyces cerevisiae suppress exclusion of M2 double-stranded RNA by L-A-HN and confer cold sensitivity in the presence of M and L-A-HN. Mol. Cell. Biol. 4:761–770.
  • Ripaud, L., Maillet L., and Cullin C.. 2003. The mechanisms of [URE3] prion elimination demonstrate that large aggregates of Ure2p are dead-end products. EMBO J. 22:5251–5259.
  • Roberts, B. T., and Wickner R. B.. 2003. Heritable activity: a prion that propagates by covalent autoactivation. Genes Dev. 17:2083–2087.
  • Santoso, A., Chien P., Osherovich L. Z., and Weissman J. S.. 2000. Molecular basis of a yeast prion species barrier. Cell 100:277–288.
  • Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194:3–21.
  • Sipe, J. D., and Cohen A. S.. 2000. Review: history of the amyloid fibril. J. Struct. Biol. 130:88–98.
  • Sondheimer, N., and Lindquist S.. 2000. Rnq1: an epigenetic modifier of protein function in yeast. Mol. Cell 5:163–172.
  • Speransky, V. V., Taylor K. L., Edskes H. K., Wickner R. B., and Steven A. C.. 2001. Prion filament networks in [URE3] cells of Saccharomyces cerevisiae. J. Cell Biol. 153:1327–1336.
  • Taylor, K. L., Cheng N., Williams R. W., Steven A. C., and Wickner R. B.. 1999. Prion domain initiation of amyloid formation in vitro from native Ure2p. Science 283:1339–1343.
  • Ter-Avanesyan, M. D., Dagkesamanskaya A. R., Kushnirov V. V., and Smirnov V. N.. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676.
  • Tuite, M. F., Mundy C. R., and Cox B. S.. 1981. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in Saccharomyces cerevisiae. Genetics 98:691–711.
  • Turoscy, V., and Cooper T. G.. 1987. Ureidosuccinate is transported by the allantoate transport system in Saccharomyces cerevisiae. J. Bacteriol. 169:2598–2600.
  • Umland, T. C., Taylor K. L., Rhee S., Wickner R. B., and Davies D. R.. 2001. The crystal structure of the nitrogen regulation fragment of the yeast prion protein Ure2p. Proc. Natl. Acad. Sci. USA 98:1459–1464.
  • Wegrzyn, R. D., Bapat K., Newnam G. P., Zink A. D., and Chernoff Y. O.. 2001. Mechanism of prion loss after Hsp104 inactivation in yeast. Mol. Cell. Biol. 21:4656–4669.
  • Wickner, R. B. 1994. [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264:566–569.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.