97
Views
161
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Neuronal LRP1 Functionally Associates with Postsynaptic Proteins and Is Required for Normal Motor Function in Mice

, , , , , , , , , & show all
Pages 8872-8883 | Received 16 Jun 2004, Accepted 13 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Bacskai, B. J., Xia M. Q., Strickland D. K., Rebeck G. W., and Hyman B. T.. 2000. The endocytic receptor protein LRP also mediates neuronal calcium signaling via N-methyl-d-aspartate receptors. Proc. Natl. Acad. Sci. USA 97:11551–11556.
  • Beffert, U., Stolt P. C., and Herz J.. 2004. Functions of lipoprotein receptors in neurons. J. Lipid Res. 45:403–409.
  • Bock, H. H., and Herz J.. 2003. Reelin activates Src family tyrosine kinases in neurons. Curr. Biol. 13:18–26.
  • Boucher, P., Gotthardt M., Li W. P., Anderson R. G., and Herz J.. 2003. LRP: role in vascular wall integrity and protection from atherosclerosis. Science 300:329–332.
  • Boucher, P., Liu P., Gotthardt M., Hiesberger T., Anderson R. G., and Herz J.. 2002. Platelet-derived growth factor mediates tyrosine phosphorylation of the cytoplasmic domain of the low density lipoprotein receptor-related protein in caveolae. J. Biol. Chem. 277:15507–15513.
  • Brown, M. D., Banker G. A., Hussaini I. M., Gonias S. L., and VandenBerg S. R.. 1997. Low density lipoprotein receptor-related protein is expressed early and becomes restricted to a somatodendritic domain during neuronal differentiation in culture. Brain Res. 747:313–317.
  • Bu, G., Maksymovitch E. A., Nerbonne J. M., and Schwartz A. L.. 1994. Expression and function of the low density lipoprotein receptor-related protein (LRP) in mammalian central neurons. J. Biol. Chem. 269:18521–18528.
  • Colledge, M., Snyder E. M., Crozier R. A., Soderling J. A., Jin Y., Langeberg L. K., Lu H., Bear M. F., and Scott J. D.. 2003. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron 40:595–607.
  • Cyr, M., Beaulieu J. M., Laakso A., Sotnikova T. D., Yao W. D., Bohn L. M., Gainetdinov R. R., and Caron M. G.. 2003. Sustained elevation of extracellular dopamine causes motor dysfunction and selective degeneration of striatal GABAergic neurons. Proc. Natl. Acad. Sci. USA 100:11035–11040.
  • Dhavan, R., Greer P. L., Morabito M. A., Orlando L. R., and Tsai L. H.. 2002. The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. J. Neurosci. 22:7879–7891.
  • Ford, L. M., Norman A. B., and Sanberg P. R.. 1989. The topography of MK-801-induced locomotor patterns in rats. Physiol. Behav. 46:755–758.
  • Gardai, S. J., Xiao Y. Q., Dickinson M., Nick J. A., Voelker D. R., Greene K. E., and Henson P. M.. 2003. By binding SIRPα or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 115:13–23.
  • Gotthardt, M., Trommsdorff M., Nevitt M. F., Shelton J., Richardson J. A., Stockinger W., Nimpf J., and Herz J.. 2000. Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J. Biol. Chem. 275:25616–25624.
  • Haas, C. A., and DeGennaro L. J.. 1988. Multiple synapsin I messenger RNAs are differentially regulated during neuronal development. J. Cell Biol. 106:195–203.
  • Herz, J. 2003. LRP: a bright beacon at the blood-brain barrier. J. Clin. Investig. 112:1483–1485.
  • Herz, J., Clouthier D. E., and Hammer R. E.. 1992. LDL receptor-related protein internalizes and degrades uPA-PAI-1 complexes and is essential for embryo implantation. Cell 71:411–421. (Author's correction, 73:428, 1993.)
  • Herz, J., Goldstein J. L., Strickland D. K., Ho Y. K., and Brown M. S.. 1991. 39-kDa protein modulates binding of ligands to low density lipoprotein receptor-related protein/alpha 2-macroglobulin receptor. J. Biol. Chem. 266:21232–21238.
  • Herz, J., Hamann U., Rogne S., Myklebost O., Gausepohl H., and Stanley K. K.. 1988. Surface location and high affinity for calcium of a 500-kd liver membrane protein closely related to the LDL-receptor suggest a physiological role as lipoprotein receptor. EMBO J. 7:4119–4127.
  • Herz, J., and Strickland D. K.. 2001. LRP: a multifunctional scavenger and signaling receptor. J. Clin. Investig. 108:779–784.
  • Husi, H., and Grant S. G.. 2001. Isolation of 2000-kDa complexes of N-methyl-d-aspartate receptor and postsynaptic density 95 from mouse brain. J. Neurochem. 77:281–291.
  • Ishiguro, M., Imai Y., and Kohsaka S.. 1995. Expression and distribution of low density lipoprotein receptor-related protein mRNA in the rat central nervous system. Brain Res. Mol. Brain Res. 33:37–46.
  • Kawasaki, H., Morooka T., Shimohama S., Kimura J., Hirano T., Gotoh Y., and Nishida E.. 1997. Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J. Biol. Chem. 272:18518–18521.
  • Kinoshita, A., Whelan C. M., Smith C. J., Mikhailenko I., Rebeck G. W., Strickland D. K., and Hyman B. T.. 2001. Demonstration by fluorescence resonance energy transfer of two sites of interaction between the low-density lipoprotein receptor-related protein and the amyloid precursor protein: role of the intracellular adapter protein Fe65. J. Neurosci. 21:8354–8361.
  • Knauer, M. F., Orlando R. A., and Glabe C. G.. 1996. Cell surface APP751 forms complexes with protease nexin 2 ligands and is internalized via the low density lipoprotein receptor-related protein (LRP). Brain Res. 740:6–14.
  • Kotecha, S. A., Oak J. N., Jackson M. F., Perez Y., Orser B. A., Van Tol H. H., and MacDonald J. F.. 2002. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 35:1111–1122.
  • Kowal, R. C., Herz J., Weisgraber K. H., Mahley R. W., Brown M. S., and Goldstein J. L.. 1990. Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein. J. Biol. Chem. 265:10771–10779.
  • Laruelle, M., Kegeles L. S., and Abi-Dargham A.. 2003. Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann. N. Y. Acad. Sci. 1003:138–158.
  • Li, Y., van Kerkhof P., Marzolo M. P., Strous G. J., and Bu G.. 2001. Identification of a major cyclic AMP-dependent protein kinase A phosphorylation site within the cytoplasmic tail of the low-density lipoprotein receptor-related protein: implication for receptor-mediated endocytosis. Mol. Cell. Biol. 21:1185–1195.
  • Loukinova, E., Ranganathan S., Kuznetsov S., Gorlatova N., Migliorini M. M., Loukinov D., Ulery P. G., Mikhailenko I., Lawrence D. A., and Strickland D. K.. 2002. Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function between LRP and the PDGF. J. Biol. Chem. 277:15499–15506.
  • Lund, E. G., Guileyardo J. M., and Russell D. W.. 1999. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain. Proc. Natl. Acad. Sci. USA 96:7238–7243.
  • Makarova, A., Mikhailenko I., Bugge T. H., List K., Lawrence D. A., and Strickland D. K.. 2003. The low density lipoprotein receptor-related protein modulates protease activity in the brain by mediating the cellular internalization of both neuroserpin and neuroserpin-tissue-type plasminogen activator complexes. J. Biol. Chem. 278:50250–50258.
  • Marambaud, P., Wen P. H., Dutt A., Shioi J., Takashima A., Siman R., and Robakis N. K.. 2003. A CBP binding transcriptional repressor produced by the PS1/epsilon-cleavage of N-cadherin is inhibited by PS1 FAD mutations. Cell 114:635–645.
  • May, P., Bock H. H., Nimpf J., and Herz J.. 2003. Differential glycosylation regulates processing of lipoprotein receptors by gamma-secretase. J. Biol. Chem. 278:37386–37392.
  • May, P., and Herz J.. 2003. LDL receptor-related proteins in neurodevelopment. Traffic 4:291–301.
  • May, P., Reddy Y. K., and Herz J.. 2002. Proteolytic processing of low density lipoprotein receptor-related protein mediates regulated release of its intracellular domain. J. Biol. Chem. 277:18736–18743.
  • Moestrup, S. K., Gliemann J., and Pallesen G.. 1992. Distribution of the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein in human tissues. Cell Tissue Res. 269:375–382.
  • Morabito, M. A., Sheng M., and Tsai L. H.. 2004. Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J. Neurosci. 24:865–876.
  • Pietrzik, C. U., Busse T., Merriam D. E., Weggen S., and Koo E. H.. 2002. The cytoplasmic domain of the LDL receptor-related protein regulates multiple steps in APP processing. EMBO J. 21:5691–5700.
  • Qiu, Z., Strickland D. K., Hyman B. T., and Rebeck G. W.. 2002. Alpha 2-macroglobulin exposure reduces calcium responses to N-methyl-d-aspartate via low density lipoprotein receptor-related protein in cultured hippocampal neurons. J. Biol. Chem. 277:14458–14466.
  • Rohlmann, A., Gotthardt M., Hammer R. E., and Herz J.. 1998. Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J. Clin. Investig. 101:689–695.
  • Rohlmann, A., Gotthardt M., Willnow T. E., Hammer R. E., and Herz J.. 1996. Sustained somatic gene inactivation by viral transfer of Cre recombinase. Nat. Biotechnol. 14:1562–1565.
  • Sabio, G., Reuver S., Feijoo C., Hasegawa M., Thomas G. M., Centeno F., Kuhlendahl S., Leal-Ortiz S., Goedert M., Garner C., and Cuenda A.. 2004. Stress- and mitogen-induced phosphorylation of the synapse-associated protein SAP90/PSD95 by activation of SAPK3/p38γ and ERK1/ERK2. Biochem. J. 380:19–30.
  • Sutherland, M. L., Williams S. H., Abedi R., Overbeek P. A., Pfaffinger P. J., and Noebels J. L.. 1999. Overexpression of a Shaker-type potassium channel in mammalian central nervous system dysregulates native potassium channel gene expression. Proc. Natl. Acad. Sci. USA 96:2451–2455.
  • Ulery, P. G., Beers J., Mikhailenko I., Tanzi R. E., Rebeck G. W., Hyman B. T., and Strickland D. K.. 2000. Modulation of beta-amyloid precursor protein processing by the low density lipoprotein receptor-related protein (LRP). Evidence that LRP contributes to the pathogenesis of Alzheimer's disease. J. Biol. Chem. 275:7410–7415.
  • van Vlijmen, B. J., Rohlmann A., Page S. T., Bensadoun A., Bos I. S., van Berkel T. J., Havekes L. M., and Herz J.. 1999. An extrahepatic receptor-associated protein-sensitive mechanism is involved in the metabolism of triglyceride-rich lipoproteins. J. Biol. Chem. 274:35219–35226.
  • Wang, X., Lee S. R., Arai K., Tsuji K., Rebeck G. W., and Lo E. H.. 2003. Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nat. Med. 9:1313–1317.
  • Weeber, E. J., Beffert U., Jones C., Christian J. M., Forster E., Sweatt J. D., and Herz J.. 2002. Reelin and ApoE receptors cooperate to enhance hippocampal synaptic plasticity and learning. J. Biol. Chem. 277:39944–39952.
  • Yepes, M., Sandkvist M., Moore E. G., Bugge T. H., Strickland D. K., and Lawrence D. A.. 2003. Tissue-type plasminogen activator induces opening of the blood-brain barrier via the LDL receptor-related protein. J. Clin. Investig. 112:1533–1540.
  • Zhu, Y., Romero M. I., Ghosh P., Ye Z., Charnay P., Rushing E. J., Marth J. D., and Parada L. F.. 2001. Ablation of NF1 function in neurons induces abnormal development of cerebral cortex and reactive gliosis in the brain. Genes Dev. 15:859–876.
  • Zhuo, M., Holtzman D. M., Li Y., Osaka H., DeMaro J., Jacquin M., and Bu G.. 2000. Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J. Neurosci. 20:542–549.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.