15
Views
45
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Notch-Induced E2A Degradation Requires CHIP and Hsc70 as Novel Facilitators of Ubiquitination

, , &
Pages 8951-8962 | Received 06 May 2004, Accepted 19 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Alberti, S., Demand J., Esser C., Emmerich N., Schild H., and Hohfeld J.. 2002. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J. Biol. Chem. 277:45920–45927.
  • Allman, D., Punt J. A., Izon D. J., Aster J. C., and Pear W. S.. 2002. An invitation to T and more: notch signaling in lymphopoiesis. Cell 109(Suppl.):S1–S11.
  • Bain, G., Engel I., Robanus Maandag E. C., te Riele H. P., Voland J. R., Sharp L. L., Chun J., Huey B., Pinkel D., and Murre C.. 1997. E2A deficiency leads to abnormalities in αβ T-cell development and to rapid development of T-cell lymphomas. Mol. Cell. Biol. 17:4782–4791.
  • Bain, G., Robanus Maandag E. C., Izon D. J., Amsen D., Kruisbeek A. M., Weintraub B., Krop I., Schlissel M. S., Feeney A. J., van Roon M., van der Valk M., te Riele H. P. J., Berns A., and Murre C.. 1994. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79:885–892.
  • Ballinger, C. A., Connell P., Wu Y., Hu Z., Thompson L. J., Yin L. Y., and Patterson C.. 1999. Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19:4535–4545.
  • Barndt, R. J., Dai M., and Zhuang Y.. 2000. Functions of E2A-HEB heterodimers in T-cell development revealed by a dominant negative mutation of HEB. Mol. Cell. Biol. 20:6677–6685.
  • Connell, P., Ballinger C. A., Jiang J., Wu Y., Thompson L. J., Hohfeld J., and Patterson C.. 2001. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat. Cell Biol. 3:93–96.
  • Cyr, D. M., Hohfeld J., and Patterson C.. 2002. Protein quality control: U-box-containing E3 ubiquitin ligases join the fold. Trends Biochem. Sci. 27:368–375.
  • Dai, Q., Zhang C., Wu Y., McDonough H., Whaley R. A., Godfrey V., Li H. H., Madamanchi N., Xu W., Neckers L., Cyr D., and Patterson C.. 2003. CHIP activates HSF1 and confers protection against apoptosis and cellular stress. EMBO J. 22:5446–5458.
  • Demand, J., Alberti S., Patterson C., and Hohfeld J.. 2001. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr. Biol. 11:1569–1577.
  • Gyuris, J., Golemis E., Chertkov H., and Brent R.. 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803.
  • Harper, J. W. 2001. Protein destruction: adapting roles for Cks proteins. Curr. Biol. 11:R431–R435.
  • Hatakeyama, S., Yada M., Matsumoto M., Ishida N., and Nakayama K. I.. 2001. U box proteins as a new family of ubiquitin-protein ligases. J. Biol. Chem. 276:33111–33120.
  • Heemskerk, M. H., Blom B., Oda K., Stegmann A. P., Bakker A. Q., Weijer K., Res P. C., and Spits H.. 1997. Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J. Exp. Med. 186:1597–1602.
  • Hirano, T., Kinoshita N., Morikawa K., and Yanagida M.. 1990. Snap helix with knob and hole: essential repeats in S. pombe nuclear protein nuc2+. Cell 60:319–328.
  • Imai, Y., Soda M., Hatakeyama S., Akagi T., Hashikawa T., Nakayama K. I., and Takahashi R.. 2002. CHIP is associated with Parkin, a gene responsible for familial Parkinson's disease, and enhances its ubiquitin ligase activity. Mol. Cell 10:55–67.
  • Jackson, P. K., and Eldridge A. G.. 2002. The SCF ubiquitin ligase: an extended look. Mol. Cell 9:923–925.
  • Jiang, J., Ballinger C. A., Wu Y., Dai Q., Cyr D. M., Hohfeld J., and Patterson C.. 2001. CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 276:42938–42944.
  • Jiang, J., Cyr D., Babbitt R. W., Sessa W. C., and Patterson C.. 2003. Chaperone-dependent regulation of endothelial nitric-oxide synthase intracellular trafficking by the co-chaperone/ubiquitin ligase CHIP. J. Biol. Chem. 278:49332–49341.
  • Karin, M., and Ben Neriah Y.. 2000. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18:621–663.
  • Kim, D., Peng X. C., and Sun X. H.. 1999. Massive apoptosis of thymocytes in T-cell-deficient Id1 transgenic mice. Mol. Cell. Biol. 19:8240–8253.
  • Kitada, T., Asakawa S., Hattori N., Matsumine H., Yamamura Y., Minoshima S., Yokochi M., Mizuno Y., and Shimizu N.. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608.
  • Koegl, M., Hoppe T., Schlenker S., Ulrich H. D., Mayer T. U., and Jentsch S.. 1999. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell 96:635–644.
  • Li, L., Xin H., Xu X., Huang M., Zhang X., Chen Y., Zhang S., Fu X. Y., and Chang Z.. 2004. CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol. Cell. Biol. 24:856–864.
  • Massari, M. E., and Murre C.. 2000. Helix-loop-helix proteins: regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 20:429–440.
  • Meacham, G. C., Patterson C., Zhang W., Younger J. M., and Cyr D. M.. 2001. The Hsc70 co-chaperone CHIP targets immature CFTR for proteasomal degradation. Nat. Cell Biol. 3:100–105.
  • Morrow, M. A., Mayer E. W., Perez C. A., Adlam M., and Siu G.. 1999. Overexpression of the helix-loop-helix protein Id2 blocks T cell development at multiple stages. Mol. Immunol. 36:491–503.
  • Murata, S., Minami Y., Minami M., Chiba T., and Tanaka K.. 2001. CHIP is a chaperone-dependent E3 ligase that ubiquitylates unfolded protein. EMBO Rep. 2:1133–1138.
  • Murre, C., McCaw P. S., and Baltimore D.. 1989. A new DNA binding and dimerization motif in immunoglobulin enhancer binding, daughterless, MyoD and myc proteins. Cell 56:777–783.
  • Nie, L., Xu M., Vladimirova A., and Sun X. H.. 2003. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J. 22:5780–5792.
  • Nikolay, R., Wiederkehr T., Rist W., Kramer G., Mayer M. P., and Bukau B.. 2004. Dimerization of the human E3 ligase CHIP via a coiled-coil domain is essential for its activity. J. Biol. Chem. 279:2673–2678.
  • Ordentlich, P., Lin A., Shen C. P., Blaumueller C., Matsuno K., Artavanis-Tsakonas S., and Kadesch T.. 1998. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol. Cell. Biol. 18:2230–2239.
  • Park, S. T., and Sun X. H.. 1998. The Tal1 oncoprotein inhibits E47-mediated transcription. Mechanism of inhibition. J. Biol. Chem. 273:7030–7037.
  • Pear, W. S., Nolan G. P., Scott M. L., and Baltimore D.. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. USA 90:8392–8396.
  • Pickart, C. M. 2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70:503–533.
  • Pui, J. C., Allman D., Xu L., DeRocco S., Karnell F. G., Bakkour S., Lee J. Y., Kadesch T., Hardy R. R., Aster J. C., and Pear W. S.. 1999. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11:299–308.
  • Radtke, F., Wilson A., and MacDonald H. R.. 2004. Notch signaling in T- and B-cell development. Curr. Opin. Immunol. 16:174–179.
  • Rezaie, A. R., Fiore M. M., Neuenschwander P. F., Esmon C. T., and Morrissey J. H.. 1992. Expression and purification of a soluble tissue factor fusion protein with an epitope for an unusual calcium-dependent antibody. Protein Expr. Purif. 3:453–460.
  • Schulman, B. A., Carrano A. C., Jeffrey P. D., Bowen Z., Kinnucan E. R., Finnin M. S., Elledge S. J., Harper J. W., Pagano M., and Pavletich N. P.. 2000. Insights into SCF ubiquitin ligases from the structure of the Skp1-Skp2 complex. Nature 408:381–386.
  • Sikorski, R. S., Boguski M. S., Goebl M., and Hieter P.. 1990. A repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. Cell 60:307–317.
  • Sui, G., Soohoo C., Affar E. B., Gay F., Shi Y., Forrester W. C., and Shi Y.. 2002. A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc. Natl. Acad. Sci. USA 99:5515–5520.
  • Sun, X.-H. 1994. Constitutive expression of the Id1 gene impairs mouse B cell development. Cell 79:893–900.
  • Sun, X.-H., and Baltimore D.. 1991. An inhibitory domain of E12 prevents DNA binding in E12 homodimers but not in E12 heterodimers. Cell 64:459–470.
  • Wiederkehr, T., Bukau B., and Buchberger A.. 2002. Protein turnover: a CHIP programmed for proteolysis. Curr. Biol. 12:R26–R28.
  • Xu, W., Marcu M., Yuan X., Mimnaugh E., Patterson C., and Neckers L.. 2002. Chaperone-dependent E3 ubiquitin ligase CHIP mediates a degradative pathway for c-ErbB2/Neu. Proc. Natl. Acad. Sci. USA 99:12847–12852.
  • Zhuang, Y., Cheng P., and Weintraub H.. 1996. B-lymphocyte development is regulated by the combined dosage of three basic helix-loop-helix genes, E2A, E2-2, and HEB. Mol. Cell. Biol. 16:2898–2905.
  • Zhuang, Y., Soriano P., and Weintraub H.. 1994. The helix-loop-helix gene E2A is required for B cell differentiation. Cell 79:875–884.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.