47
Views
95
CrossRef citations to date
0
Altmetric
Gene Expression

RNA Polymerase II Carboxy-Terminal Domain Phosphorylation Is Required for Cotranscriptional Pre-mRNA Splicing and 3′-End Formation

, &
Pages 8963-8969 | Received 17 Mar 2004, Accepted 28 Jul 2004, Published online: 27 Mar 2023

REFERENCES

  • Ahn, S. H., Kim M., and Buratowski S.. 2004. Phosphorylation of serine 2 within the rna polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell. 13:67–76.
  • Bauren, G., Belikov S., and Wieslander L.. 1998. Transcriptional termination in the Balbiani ring 1 gene is closely coupled to 3′-end formation and excision of the 3′-terminal intron. Genes Dev. 12:2759–2769.
  • Bauren, G., and Wieslander L.. 1994. Splicing of Balbiani ring 1 gene pre-mRNA occurs simultaneously with transcription. Cell 76:183–192.
  • Bentley, D. 2002. The mRNA assembly line: transcription and processing machines in the same factory. Curr. Opin. Cell Biol. 14:336–342.
  • Beyer, A. L., and Osheim Y. N.. 1988. Splice site selection, rate of splicing, and alternative splicing on nascent transcripts. Genes Dev. 2:754–765.
  • Carty, S. M., Goldstrohm A. C., Sune C., Garcia-Blanco M. A., and Greenleaf A. L.. 2000. Protein-interaction modules that organize nuclear function: FF domains of CA150 bind the phosphoCTD of RNA polymerase II. Proc. Natl. Acad. Sci. USA 97:9015–9020.
  • Corden, J., and Ingles C.. 1992. Carboxy-terminal domain of the largest subunit of eukaryotic RNA polymerase II, p. 81–108. In McKnight S. and Yamamoto K. (ed.), Transcriptional regulation, vol. 1. Cold Spring Harbor Laboratory Press, New York, N.Y.
  • Custodio, N., Carmo-Fonseca M., Geraghty F., Pereira H. S., Grosveld F., and Antoniou M.. 1999. Inefficient processing impairs release of RNA from the site of transcription. EMBO J. 18:2855–2866.
  • Egyhazi, E., Ossoinak A., Pigon A., Holmgren C., Lee J. M., and Greenleaf A. L.. 1996. Phosphorylation dependence of the initiation of productive transcription of balbiani ring-2 genes in living cells. Chromosoma 104:422–433.
  • Fong, N., and Bentley D.. 2001. Capping, splicing and 3′ processing are independently stimulated by RNA polymerase II: different functions for different segments of the CTD. Genes Dev. 15:1783–1795.
  • Ghosh, S., and Garcia-Blanco M. A.. 2000. Coupled in vitro synthesis and splicing of RNA polymerase II transcripts. RNA 6:1325–1334.
  • Green, M. R., Maniatis T., and Melton D. A.. 1983. Human beta-globin pre-mRNA synthesized in vitro is accurately spliced in Xenopus oocyte nuclei. Cell 32:681–694.
  • Greenleaf, A. L. 1993. Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem. Sci. 18:117–119.
  • Hirose, Y., and Manley J. L.. 2000. RNA polymerase II and the integration of nuclear events. Genes Dev. 14:1415–1429.
  • Hirose, Y., and Manley J. L.. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93–96.
  • Hirose, Y., Tacke R., and Manley J. L.. 1999. Phosphorylated RNA polymerase II stimulates pre-mRNA splicing. Genes Dev. 13:1234–1239.
  • Ho, C., and Shuman S.. 1999. Distinct Effector roles for Ser2 and Ser5 phosphorylation of the RNA polymerase II CTD in the recruitment and allosteric activation of mammalian capping enzyme. Mol. Cell. 3:405–411.
  • Jacobs, E. Y., Ogiwara I., and Weiner A. M.. 2004. Role of the C-terminal domain of RNA polymerase II in U2 snRNA transcription and 3′ processing. Mol. Cell. Biol. 24:846–855.
  • Kobor, M., and Greenblatt J.. 2002. Regulation of transcription elongation by phosphorylation. Biochim. Biophys. Acta 1577:261.
  • Lai, M. C., Lin R. I., and Tarn W. Y.. 2003. Differential effects of hyperphosphorylation on splicing factor SRp55. Biochem. J. 371:937–945.
  • Laybourn, P. J., and Dahmus M. E.. 1990. Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J. Biol. Chem. 265:13165–13173.
  • Levitt, N., Briggs D., Gil A., and Proudfoot N. J.. 1989. Definition of an efficient synthetic poly(A) site. Genes Dev. 3:1019–1025.
  • Maniatis, T., and Reed R.. 2002. An extensive network of coupling among gene expression machines. Nature 416:499–506.
  • McCracken, S., Fong N., Rosonina E., Yankulov K., Brothers G., Siderovski D., Hessel A., Foster S., Amgen EST Program, Shuman S., and Bentley D.. 1997. 5′-Capping enzymes are targeted to pre-mRNA by binding to the phosphorylated carboxy-terminal domain of RNA polymerase II. Genes Dev. 11:3306–3318.
  • McCracken, S., Fong N., Yankulov K., Ballantyne S., Pan G. H., Greenblatt J., Patterson S. D., Wickens M., and Bentley D. L.. 1997. The C-terminal domain of RNA polymerase II couples messenger RNA processing to transcription. Nature 385:357–361.
  • Medlin, J. E., Uguen P., Taylor A., Bentley D. L., and Murphy S.. 2003. The C-terminal domain of pol II and a DRB-sensitive kinase are required for 3′ processing of U2 snRNA. EMBO J. 22:925–934.
  • Nguyen, V. T., Giannoni F., Dubois M. F., Seo S. J., Vigneron M., Kedinger C., and Bensaude O.. 1996. In vivo degradation of RNA polymerase II largest subunit triggered by alpha-amanitin. Nucleic Acids Res. 24:2924–2929.
  • Ni, Z., Schwartz B. E., Werner J., Suarez J. R., and Lis J. T.. 2004. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol. Cell. 13:55–65.
  • Osheim, Y. N., Proudfoot N. J., and Beyer A. L.. 1999. EM visualization of transcription by RNA polymerase II: downstream termination requires a poly(A) signal but not transcript cleavage. Mol. Cell. 3:379–387.
  • Price, D. H. 2000. P-TEFb, a cyclin-dependent kinase controlling elongation by RNA polymerase II. Mol. Cell. Biol. 20:2629–2634.
  • Proudfoot, N. J., Furger A., and Dye M. J.. 2002. Integrating mRNA processing with transcription. Cell 108:501–512.
  • Rasmussen, E. B., and Lis J. T.. 1993. In-vivo transcriptional pausing and cap formation on 3 drosophila heat-shock genes. Proc. Natl. Acad. Sci. USA 90:7923–7927.
  • Ryan, K., Murthy K. G., Kaneko S., and Manley J. L.. 2002. Requirements of the RNA polymerase II C-terminal domain for reconstituting pre-mRNA 3′ cleavage. Mol. Cell. Biol. 22:1684–1692.
  • Schroeder, S., Schwer B., Shuman S., and Bentley D.. 2000. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev. 14:2435–2440.
  • Shuman, S. 1997. Origins of mRNA identity: capping enzymes bind to the phosphorylated C-terminal domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 94:12758–12760.
  • Thompson, N., Aronson D., and Burgess R.. 1990. Purification of eukaryortic RNA polymerase II by immunoaffinity chromatography. J. Biol. Chem. 265:7069–7077.
  • Wetterberg, I., Bauren G., and Wieslander L.. 1996. The intranuclear site of excision of each intron in Balbiani ring 3 pre-mRNA is influenced by the time remaining to transcription termination and different excision efficiencies for the various introns. RNA 2:641–651.
  • Wickens, M. P., and Gurdon J. B.. 1983. Post-transcriptional processing of simian virus 40 late transcripts in injected frog oocytes. J. Mol. Biol. 163:1–26.
  • Yankulov, K. Y., Pandes M., Mccracken S., Bouchard D., and Bentley D. L.. 1996. TFIIH functions in regulating transcriptional elongation by RNA-polymerase II in Xenopus oocytes. Mol. Cell. Biol. 16:3291–3299.
  • Yuryev, A., Patturajan M., Litingtung Y., Joshi R., Gentile C., Gebara M., and Corden J.. 1996. The CTD of RNA polymerase II interacts with a novel set of SR-like proteins. Proc. Natl. Acad. Sci. USA 93:6975–6980.
  • Zandomeni, R., Zandomeni M. C., Shugar D., and Weinmann R.. 1986. Casein kinase type II is involved in the inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J. Biol. Chem. 261:3414–3419.
  • Zeng, C., and Berget S. M.. 2000. Participation of the C-terminal domain of RNA polymerase II in exon definition during pre-mRNA splicing. Mol. Cell. Biol. 20:8290–8301.
  • Zhou, M., Deng L., Kashanchi F., Brady J. N., Shatkin A. J., and Kumar A.. 2003. The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA. Proc. Natl. Acad. Sci. USA 100:12666–12671.
  • Zhu, Y. R., Peery T., Peng T. M., Ramanathan Y., Marshall N., Marshall T., Amendt B., Mathews M. B., and Price D. H.. 1997. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro. Genes Dev. 11:2622–2632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.