32
Views
120
CrossRef citations to date
0
Altmetric
Transcriptional Regulation

SCL Assembles a Multifactorial Complex That Determines Glycophorin A Expression

, , &
Pages 1439-1452 | Received 07 Jul 2003, Accepted 07 Nov 2003, Published online: 27 Mar 2023

REFERENCES

  • Anderson, K. P., Crable S. C., and Lingrel J. B.. 2000. The GATA-E box-GATA motif in the EKLF promoter is required for in vivo expression. Blood 95:1652–1655.
  • Aplan, P. D., Jones C. A., Chervinsky D. S., Zhao X., Ellsworth M., Wu C., McGuire E. A., and Gross K. W.. 1997. An scl gene product lacking the transactivation domain induces bony abnormalities and cooperates with LMO1 to generate T-cell malignancies in transgenic mice. EMBO J. 16:2408–2419.
  • Aplan, P. D., Nakahara K., Orkin S. H., and Kirsch I. R.. 1992. The SCL gene product: a positive regulator of erythroid differentiation. EMBO J. 11:4073–4081.
  • Arber, S., and Caroni P.. 1996. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev. 10:289–300.
  • Auffray, I., Marfatia S., de Jong K., Lee G., Huang C. H., Paszty C., Tanner M. J., Mohandas N., and Chasis J. A.. 2001. Glycophorin A dimerization and band 3 interaction during erythroid membrane biogenesis: in vivo studies in human glycophorin A transgenic mice. Blood 97:2872–2878.
  • Begley, C. G., and Green A. R.. 1999. The SCL gene: from case report to critical hematopoietic regulator. Blood 93:2760–2770.
  • Brady, G., Billia F., Knox J., Hoang T., Kirsch I. R., Voura E. B., Hawley R. G., Cumming R., Buchwald M., and Siminovitch K.. 1995. Analysis of gene expression in a complex differentiation hierarchy by global amplification of cDNA from single cells. Curr. Biol. 5:909–922. (Erratum, 10:1201).
  • Bruce, L. J., Ghosh S., King M. J., Layton D. M., Mawby W. J., Stewart G. W., Oldenborg P. A., Delaunay J., and Tanner M. J.. 2002. Absence of CD47 in protein 4.2-deficient hereditary spherocytosis in man: an interaction between the Rh complex and the band 3 complex. Blood 100:1878–1885.
  • Bruce, L. J., Groves J. D., Okubo Y., Thilaganathan B., and Tanner M. J.. 1994. Altered band 3 structure and function in glycophorin A- and B-deficient (MkMk) red blood cells. Blood 84:916–922.
  • Camara-Clayette, V., Rahuel C., Bertrand O., and Cartron J. P.. 1999. The E-box of the human glycophorin B promoter is involved in the erythroid-specific expression of the GPB gene. Biochem. Biophys. Res. Commun. 265:170–176.
  • Chasis, J. A., and Mohandas N.. 1992. Red blood cell glycophorins. Blood 80:1869–1879.
  • Chishti, A. H., Palek J., Fisher D., Maalouf G. J., and Liu S. C.. 1996. Reduced invasion and growth of Plasmodium falciparum into elliptocytic red blood cells with a combined deficiency of protein 4.1, glycophorin C, and p55. Blood 87:3462–3469.
  • Crispino, J. D., Lodish M. B., MacKay J. P., and Orkin S. H.. 1999. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell 3:219–228.
  • Crossley, M., Merika M., and Orkin S. H.. 1995. Self-association of the erythroid transcription factor GATA-1 mediated by its zinc finger domains. Mol. Cell. Biol. 15:2448–2456.
  • Elefanty, A. G., Begley C. G., Hartley L., Papaevangeliou B., and Robb L.. 1999. SCL expression in the mouse embryo detected with a targeted lacZ reporter gene demonstrates its localization to hematopoietic, vascular, and neural tissues. Blood 94:3754–3763.
  • Elefanty, A. G., Begley C. G., Metcalf D., Barnett L., Kontgen F., and Robb L.. 1998. Characterization of hematopoietic progenitor cells that express the transcription factor SCL, using a lacZ “knock-in” strategy. Proc. Natl. Acad. Sci. USA 95:11897–11902.
  • Elwood, N. J., Zogos H., Pereira D. S., Dick J. E., and Begley C. G.. 1998. Enhanced megakaryocyte and erythroid development from normal human CD34+ cells: consequence of enforced expression of SCL. Blood 91:3756–3765.
  • Fernandez-Funez, P., Lu C. H., Rincon-Limas D. E., Garcia-Bellido A., and Botas J.. 1998. The relative expression amounts of apterous and its co-factor dLdb/Chip are critical for dorso-ventral compartmentalization in the Drosophila wing. EMBO J. 17:6846–6853.
  • Feuerstein, R., Wang X., Song D., Cooke N. E., and Liebhaber S. A.. 1994. The LIM/double zinc-finger motif functions as a protein dimerization domain. Proc. Natl. Acad. Sci. USA 91:10655–10659.
  • Fox, A. H., Liew C., Holmes M., Kowalski K., Mackay J., and Crossley M.. 1999. Transcriptional cofactors of the FOG family interact with GATA proteins by means of multiple zinc fingers. EMBO J. 18:2812–2822.
  • Gering, M., Rodaway A. R., Gottgens B., Patient R. K., and Green A. R.. 1998. The SCL gene specifies haemangioblast development from early mesoderm. EMBO J. 17:4029–4045.
  • Grutz, G. G., Bucher K., Lavenir I., Larson T., Larson R., and Rabbitts T. H.. 1998. The oncogenic T cell LIM-protein Lmo2 forms part of a DNA-binding complex specifically in immature T cells. EMBO J. 17:4594–4605.
  • Hall, M. A., Curtis D. J., Metcalf D., Elefanty A. G., Sourris K., Robb L., Gothert J. R., Jane S. M., and Begley C. G.. 2003. The critical regulator of embryonic hematopoiesis, SCL, is vital in the adult for megakaryopoiesis, erythropoiesis, and lineage choice in CFU-S12. Proc. Natl. Acad. Sci. USA 100:992–997.
  • Hassoun, H., Hanada T., Lutchman M., Sahr K. E., Palek J., Hanspal M., and Chishti A. H.. 1998. Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band 3 (AE1) gene. Blood 91:2146–2151.
  • Herblot, S., Steff A.-M., Hugo P., Aplan P. D., and Hoang T.. 2000. SCL and LMO1 alter thymocyte differentiation: inhibition of E2A-HEB function and pre-Ta chain expression. Nat. Immunol. 1:138–144.
  • Hoang, T., Paradis E., Brady G., Billia F., Nakahara K., Iscove N. N., and Kirsch I. R.. 1996. Opposing effects of the basic helix-loop-helix transcription factor SCL on erythroid and monocytic differentiation. Blood 87:102–111.
  • Hsu, H. L., Huang L., Tsan J. T., Funk W., Wright W. E., Hu J. S., Kingston R. E., and Baer R.. 1994. Preferred sequences for DNA recognition by the TAL1 helix-loop-helix proteins. Mol. Cell. Biol. 14:1256–1265.
  • Hu, M., Krause D., Greaves M., Sharkis S., Dexter M., Heyworth C., and Enver T.. 1997. Multilineage gene expression precedes commitment in the hemopoietic system. Genes Dev. 11:774–785.
  • Kallianpur, A. R., Jordan J. E., and Brandt S. J.. 1994. The SCL/TAL-1 gene is expressed in progenitors of both the hematopoietic and vascular systems during embryogenesis. Blood 83:1200–1208.
  • Krosl, G., He G., Lefrancois M., Charron F., Romeo P. H., Jolicoeur P., Kirsch I. R., Nemer M., and Hoang T.. 1998. Transcription factor SCL is required for c-kit expression and c-Kit function in hemopoietic cells. J. Exp. Med. 188:439–450.
  • Lécuyer, E., Herblot S., Saint-Denis M., Martin R., Begley C. G., Porcher C., Orkin S. H., and Hoang T.. 2002. The SCL complex regulates c-kit expression in hematopoietic cells through functional interaction with Sp1. Blood 100:2430–2440.
  • Massari, M. E., Grant P. A., Pray-Grant M. G., Berger S. L., Workman J. L., and Murre C.. 1999. A conserved motif present in a class of helix-loop-helix proteins activates transcription by direct recruitment of the SAGA complex. Mol. Cell 4:63–73.
  • Mead, P. E., Deconinck A. E., Huber T. L., Orkin S. H., and Zon L. I.. 2001. Primitive erythropoiesis in the Xenopus embryo: the synergistic role of LMO-2, SCL and GATA-binding proteins. Development 128:2301–2308.
  • Mead, P. E., Kelley C. M., Hahn P. S., Piedad O., and Zon L. I.. 1998. SCL specifies hematopoietic mesoderm in Xenopus embryos. Development 125:2611–2620.
  • Merika, M., and Orkin S. H.. 1995. Functional synergy and physical interactions of the erythroid transcription factor GATA-1 with the Kruppel family proteins Sp1 and EKLF. Mol. Cell. Biol. 15:2437–2447.
  • Mikkola, H. K., Klintman J., Yang H., Hock H., Schlaeger T. M., Fujiwara Y., and Orkin S. H.. 2003. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421:547–551.
  • Milan, M., and Cohen S. M.. 1999. Regulation of LIM homeodomain activity in vivo: a tetramer of dLDB and apterous confers activity and capacity for regulation by dLMO. Mol. Cell 4:267–273.
  • Morcillo, P., Rosen C., Baylies M. K., and Dorsett D.. 1997. Chip, a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila. Genes Dev. 11:2729–2740.
  • Mukhopadhyay, M., Teufel A., Yamashita T., Agulnick A. D., Chen L., Downs K. M., Schindler A., Grinberg A., Huang S. P., Dorward D., and Westphal H.. 2003. Functional ablation of the mouse Ldb1 gene results in severe patterning defects during gastrulation. Development 130:495–505.
  • Onda, M., Kudo S., Rearden A., Mattei M. G., and Fukuda M.. 1993. Identification of a precursor genomic segment that provided a sequence unique to glycophorin B and E genes. Proc. Natl. Acad. Sci. USA 90:7220–7224.
  • Ono, Y., Fukuhara N., and Yoshie O.. 1998. TAL1 and LIM-only proteins synergistically induce retinaldehyde dehydrogenase 2 expression in T-cell acute lymphoblastic leukemia by acting as cofactors for GATA3. Mol. Cell. Biol. 18:6939–6950.
  • Ory, D. S., Neugeboren B. A., and Mulligan R. C.. 1996. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. USA 93:11400–11406.
  • Osada, H., Grutz G., Axelson H., Forster A., and Rabbitts T. H.. 1995. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc. Natl. Acad. Sci. USA 92:9585–9589.
  • Porcher, C., Liao E. C., Fujiwara Y., Zon L. I., and Orkin S. H.. 1999. Specification of hematopoietic and vascular development by the bHLH transcription factor SCL without direct DNA binding. Development 126:4603–4615.
  • Porcher, C., Swat W., Rockwell K., Fujiwara Y., Alt F. W., and Orkin S. H.. 1996. The T cell leukemia oncoprotein SCL/tal-1 is essential for development of all hematopoietic lineages. Cell 86:47–57.
  • Poulin, G., Lebel M., Chamberland M., Paradis F. W., and Drouin J.. 2000. Specific protein-protein interaction between basic helix-loop-helix transcription factors and homeoproteins of the Pitx family. Mol. Cell. Biol. 20:4826–4837.
  • Pulford, K., Lecointe N., Leroy-Viard K., Jones M., Mathieu-Mahul D., and Mason D. Y.. 1995. Expression of TAL-1 proteins in human tissues. Blood 85:675–684.
  • Rahuel, C., Elouet J. F., and Cartron J. P.. 1994. Post-transcriptional regulation of the cell surface expression of glycophorins A, B, and E. J. Biol. Chem. 269:32752–32758.
  • Rahuel, C., Vinit M. A., Lemarchandel V., Cartron J. P., and Romeo P. H.. 1992. Erythroid-specific activity of the glycophorin B promoter requires GATA-1 mediated displacement of a repressor. EMBO J. 11:4095–4102.
  • Ramain, P., Khechumian R., Khechumian K., Arbogast N., Ackermann C., and Heitzler P.. 2000. Interactions between chip and the achaete/scute-daughterless heterodimers are required for pannier-driven proneural patterning. Mol. Cell 6:781–790.
  • Rincon-Limas, D. E., Lu C. H., Canal I., and Botas J.. 2000. The level of DLDB/CHIP controls the activity of the LIM homeodomain protein apterous: evidence for a functional tetramer complex in vivo. EMBO J. 19:2602–2614.
  • Robb, L., Elwood N. J., Elefanty A. G., Kontgen F., Li R., Barnett L. D., and Begley C. G.. 1996. The scl gene product is required for the generation of all hematopoietic lineages in the adult mouse. EMBO J. 15:4123–4129.
  • Robb, L., Lyons I., Li R., Hartley L., Kontgen F., Harvey R. P., Metcalf D., and Begley C. G.. 1995. Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. Proc. Natl. Acad. Sci. USA 92:7075–7079.
  • Sanchez, M. J., Bockamp E. O., Miller J., Gambardella L., and Green A. R.. 2001. Selective rescue of early haematopoietic progenitors in Scl−/− mice by expressing Scl under the control of a stem cell enhancer. Development 128:4815–4827.
  • Shivdasani, R. A., Mayer E. L., and Orkin S. H.. 1995. Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL. Nature 373:432–434.
  • Sieweke, M. H., and Graf T.. 1998. A transcription factor party during blood cell differentiation. Curr. Opin. Genet. Dev. 8:545–551.
  • Tenen, D. G., Hromas R., Licht J. D., and Zhang D. E.. 1997. Transcription factors, normal myeloid development, and leukemia. Blood 90:489–519.
  • Torigoi, E., Bennani-Baiti I. M., Rosen C., Gonzalez K., Morcillo P., Ptashne M., and Dorsett D.. 2000. Chip interacts with diverse homeodomain proteins and potentiates bicoid activity in vivo. Proc. Natl. Acad. Sci. USA 97:2686–2691.
  • Tremblay, M., Herblot S., Lécuyer E., and Hoang T.. 2003. Regulation of pTα gene expression by a dosage of E2A, HEB, and SCL. J. Biol. Chem. 278:12680–12687.
  • Tsai, F. Y., and Orkin S. H.. 1997. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89:3636–3643.
  • Tsang, A. P., Fujiwara Y., Hom D. B., and Orkin S. H.. 1998. Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG. Genes Dev. 12:1176–1188.
  • Tsang, A. P., Visvader J. E., Turner C. A., Fujiwara Y., Yu C., Weiss M. J., Crossley M., and Orkin S. H.. 1997. FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation. Cell 90:109–119.
  • Valtieri, M., Tocci A., Gabbianelli M., Luchetti L., Masella B., Vitelli L., Botta R., Testa U., Condorelli G. L., and Peschle C.. 1998. Enforced TAL-1 expression stimulates primitive, erythroid and megakaryocytic progenitors but blocks the granulopoietic differentiation program. Cancer Res. 58:562–569.
  • van Meyel, D. J., O'Keefe D. D., Jurata L. W., Thor S., Gill G. N., and Thomas J. B.. 1999. Chip and apterous physically interact to form a functional complex during Drosophila development. Mol. Cell 4:259–265.
  • Visvader, J. E., Mao X., Fujiwara Y., Hahm K., and Orkin S. H.. 1997. The LIM-domain binding protein Ldb1 and its partner LMO2 act as negative regulators of erythroid differentiation. Proc. Natl. Acad. Sci. USA 94:13707–13712.
  • Vyas, P., McDevitt M. A., Cantor A. B., Katz S. G., Fujiwara Y., and Orkin S. H.. 1999. Different sequence requirements for expression in erythroid and megakaryocytic cells within a regulatory element upstream of the GATA-1 gene. Development 126:2799–2811.
  • Wadman, I., Li J., Bash R. O., Forster A., Osada H., Rabbitts T. H., and Baer R.. 1994. Specific in vivo association between the bHLH and LIM proteins implicated in human T cell leukemia. EMBO J. 13:4831–4839.
  • Wadman, I. A., Osada H., Grutz G. G., Agulnick A. D., Westphal H., Forster A., and Rabbitts T. H.. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16:3145–3157.
  • Weiss, M. J., Keller G., and Orkin S. H.. 1994. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8:1184–1197.
  • Xu, Z., Huang S., Chang L.-S., Agulnick A. D., and Brandt S. J.. 2003. Identification of a TAL1 target gene reveals a positive role for the LIM domain-binding protein Ldb1 in erythroid gene expression and differentiation. Mol. Cell. Biol. 23:7585–7599.
  • Zhao, X. F., and Aplan P. D.. 1999. The hematopoietic transcription factor SCL binds the p44 subunit of TFIIH. J. Biol. Chem. 274:1388–1393.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.