42
Views
87
CrossRef citations to date
0
Altmetric
Gene Expression

Dnmt1 Expression in Pre- and Postimplantation Embryogenesis and the Maintenance of IAP Silencing

, , , , &
Pages 1640-1648 | Received 11 Jul 2003, Accepted 12 Nov 2003, Published online: 27 Mar 2023

REFERENCES

  • Bourc'his, D., Xu G. L., Lin C. S., Bollman B., and Bestor T. H.. 2001. Dnmt3L and the establishment of maternal genomic imprints. Science 294:2536–2539.
  • Carlson, L. L., Page A. W., and Bestor T. H.. 1992. Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes Dev. 6:2536–2541.
  • Chen, R. Z., Pettersson U., Beard C., Jackson-Grusby L., and Jaenisch R.. 1998. DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93.
  • Cooney, C. A., Dave A. A., and Wolff G. L.. 2002. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J. Nutr. 132:2393S–2400S.
  • Duhl, D. M., Vrieling H., Miller K. A., Wolff G. L., and Barsh G. S.. 1994. Neomorphic agouti mutations in obese yellow mice. Nat. Genet. 8:59–65.
  • Eden, A., Gaudet F., Waghmare A., and Jaenisch R.. 2003. Chromosomal instability and tumors promoted by DNA hypomethylation. Science 300:455.
  • Gaudet, F., Hodgson J. G., Eden A., Jackson-Grusby L., Dausman J., Gray J. W., Leonhardt H., and Jaenisch R.. 2003. Induction of tumors in mice by genomic hypomethylation. Science 300:489–492.
  • Gaudet, F., Talbot D., Leonhardt H., and Jaenisch R.. 1998. A short DNA methyltransferase isoform restores methylation in vivo. J. Biol. Chem. 273:32725–32729.
  • Greally, J. M. 2002. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. Proc. Natl. Acad. Sci. USA 99:327–332.
  • Gwynn, B., Lueders K., Sands M. S., and Birkenmeier E. H.. 1998. Intracisternal A-particle element transposition into the murine β-glucuronidase gene correlates with loss of enzyme activity: a new model for β-glucuronidase deficiency in the C3H mouse. Mol. Cell. Biol. 18:6474–6481.
  • Hashimshony, T., Zhang J., Keshet I., Bustin M., and Cedar H.. 2003. The role of DNA methylation in setting up chromatin structure during development. Nat. Genet. 34:187–192.
  • Hata, K., Okano M., Lei H., and Li E.. 2002. Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129:1983–1993.
  • Howell, C. Y., Bestor T. H., Ding F., Latham K. E., Mertineit C., Trasler J. M., and Chaillet J. R.. 2001. Genomic imprinting disrupted by a maternal effect mutation in the Dnmt1 gene. Cell 104:829–838.
  • Howlett, S. K., and Reik W.. 1991. Methylation levels of maternal and paternal genomes during preimplantation development. Development 113:119–127.
  • Jackson-Grusby, L., Beard C., Possemato R., Tudor M., Fambrough D., Csankovszki G., Dausman J., Lee P., Wilson C., Lander E., and Jaenisch R.. 2001. Loss of genomic methylation causes p53-dependent apoptosis and epigenetic deregulation. Nat. Genet. 27:31–39.
  • Jaenisch, R., and Bird A.. 2003. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat. Genet. 33(Suppl.):245–254.
  • Kafri, T., Ariel M., Brandeis M., Shemer R., Urven L., McCarrey J., Cedar H., and Razin A.. 1992. Developmental pattern of gene-specific DNA methylation in the mouse embryo and germ line. Genes Dev. 6:705–714.
  • Landers, E. S., et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921.
  • Lane, N., Dean W., Erhardt S., Hajkova P., Surani A., Walter J., and Reik W.. 2003. Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93.
  • Lei, H., Oh S. P., Okano M., Juttermann R., Goss K. A., Jaenisch R., and Li E.. 1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195–3205.
  • Li, E. 2002. Chromatin modification and epigenetic reprogramming in mammalian development. Nat. Rev. Genet. 3:662–673.
  • Li, E., Bestor T. H., and Jaenisch R.. 1992. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 69:915–926.
  • Liu, Y. H., Ma L., Wu L. Y., Luo W., Kundu R., Sangiorgi F., Snead M. L., and Maxson R.. 1994. Regulation of the Msx2 homeobox gene during mouse embryogenesis: a transgene with 439 bp of 5′ flanking sequence is expressed exclusively in the apical ectodermal ridge of the developing limb. Mech. Dev. 48:187–197.
  • Lorincz, M. C., Schubeler D., Hutchinson S. R., Dickerson D. R., and Groudine M.. 2002. DNA methylation density influences the stability of an epigenetic imprint and Dnmt3a/b-independent de novo methylation. Mol. Cell. Biol. 22:7572–7580.
  • Lyko, F., Ramsahoye B. H., Kashevsky H., Tudor M., Mastrangelo M. A., Orr-Weaver T. L., and Jaenisch R.. 1999. Mammalian (cytosine-5) methyltransferases cause genomic DNA methylation and lethality in Drosophila. Nat. Genet. 23:363–366.
  • Mayer, W., Niveleau A., Walter J., Fundele R., and Haaf T.. 2000. Demethylation of the zygotic paternal genome. Nature 403:501–502.
  • Mertineit, C., Yoder J. A., Taketo T., Laird D. W., Trasler J. M., and Bestor T. H.. 1998. Sex-specific exons control DNA methyltransferase in mammalian germ cells. Development 125:889–897.
  • Michaud, E. J., van Vugt M. J., Bultman S. J., Sweet H. O., Davisson M. T., and Woychik R. P.. 1994. Differential expression of a new dominant agouti allele (Aiapy) is correlated with methylation state and is influenced by parental lineage. Genes Dev. 8:1463–1472.
  • Morgan, H. D., Sutherland H. G., Martin D. I., and Whitelaw E.. 1999. Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23:314–318.
  • Okano, M., Bell D. W., Haber D. A., and Li E.. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257.
  • Oswald, J., Engemann S., Lane N., Mayer W., Olek A., Fundele R., Dean W., Reik W., and Walter J.. 2000. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10:475–478.
  • Petronis, A. 2001. Human morbid genetics revisited: relevance of epigenetics. Trends Genet. 17:142–146.
  • Rakyan, V. K., Chong S., Champ M. E., Cuthbert P. C., Morgan H. D., Luu K. V., and Whitelaw E.. 2003. Transgenerational inheritance of epigenetic states at the murine AxinFu allele occurs after maternal and paternal transmission. Proc. Natl. Acad. Sci. USA 100:2538–2543.
  • Reik, W., and Walter J.. 2001. Genomic imprinting: parental influence on the genome. Nat. Rev. Genet. 2:21–32.
  • Rougier, N., Bourc'his D., Gomes D. M., Niveleau A., Plachot M., Paldi A., and Viegas-Pequignot E.. 1998. Chromosome methylation patterns during mammalian preimplantation development. Genes Dev. 12:2108–2113.
  • Speek, M. 2001. Antisense promoter of human L1 retrotransposon drives transcription of adjacent cellular genes. Mol. Cell. Biol. 21:1973–1985.
  • Sun, X., Lewandoski M., Meyers E. N., Liu Y. H., Maxson R. E., Jr., and Martin G. R.. 2000. Conditional inactivation of Fgf4 reveals complexity of signalling during limb bud development. Nat. Genet. 25:83–86.
  • Tremolizzo, L., Carboni G., Ruzicka W. B., Mitchell C. P., Sugaya I., Tueting P., Sharma R., Grayson D. R., Costa E., and Guidotti A.. 2002. An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc. Natl. Acad. Sci. USA 99:17095–17100.
  • Tucker, K. L., Beard C., Dausmann J., Jackson-Grusby L., Laird P. W., Lei H., Li E., and Jaenisch R.. 1996. Germ-line passage is required for establishment of methylation and expression patterns of imprinted but not of nonimprinted genes. Genes Dev. 10:1008–1020.
  • Ukai, H., Ishii-Oba H., Ukai-Tadenuma M., Ogiu T., and Tsuji H.. 2003. Formation of an active form of the interleukin-2/15 receptor beta-chain by insertion of the intracisternal A particle in a radiation-induced mouse thymic lymphoma and its role in tumorigenesis. Mol. Carcinog. 37:110–119.
  • Walsh, C. P., Chaillet J. R., and Bestor T. H.. 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20:116–117.
  • Waterland, R. A., and Jirtle R. L.. 2003. Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol. Cell. Biol. 23:5293–5300.
  • Waterston, R. H., et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562.
  • Wolff, G. L., Kodell R. L., Moore S. R., and Cooney C. A.. 1998. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12:949–957.
  • Yoder, J. A., Walsh C. P., and Bestor T. H.. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13:335–340.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.