21
Views
64
CrossRef citations to date
0
Altmetric
Cell Growth and Development

Human CNK1 Acts as a Scaffold Protein, Linking Rho and Ras Signal Transduction Pathways

, &
Pages 1736-1746 | Received 09 Apr 2003, Accepted 17 Nov 2003, Published online: 27 Mar 2023

REFERENCES

  • Anselmo, A. N., Bumeister R., Thomas J. M., and White M. A.. 2002. Critical contribution of linker proteins to Raf kinase activation. J. Biol. Chem. 277:5940–5943.
  • Bishop, A. L., and Hall A.. 2000. Rho GTPases and their effector proteins. Biochem. J. 348(Part 2):241–255.
  • Burbelo, P. D., Drechsel D., and Hall A.. 1995. A conserved binding motif defines numerous candidate target proteins for both Cdc42 and Rac GTPases. J. Biol. Chem. 270:29071–29074.
  • Charron, F., Tsimiklis G., Arcand M., Robitaille L., Liang Q., Molkentin J. D., Meloche S., and Nemer M.. 2001. Tissue-specific GATA factors are transcriptional effectors of the small GTPase RhoA. Genes Dev. 15:2702–2719.
  • De Ruiter, N. D., Burgering B. M., and Bos J. L.. 2001. Regulation of the Forkhead transcription factor AFX by Ral-dependent phosphorylation of threonines 447 and 451. Mol. Cell. Biol. 21:8225–8235.
  • Diekmann, D., and Hall A.. 1995. In vitro binding assay for interactions of Rho and Rac with GTPase-activating proteins and effectors. Methods Enzymol. 256:207–215.
  • Geneste, O., Copeland J. W., and Treisman R.. 2002. LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J. Cell Biol. 157:831–838.
  • Hall, A. 1998. Rho GTPases and the actin cytoskeleton. Science 279:509–514.
  • Hamad, N. M., Elconin J. H., Karnoub A. E., Bai W., Rich J. N., Abraham R. T., Der C. J., and Counter C. M.. 2002. Distinct requirements for Ras oncogenesis in human versus mouse cells. Genes Dev. 16:2045–2057.
  • Jaffe, A. B., and Hall A.. 2002. Rho GTPases in transformation and metastasis. Adv. Cancer Res. 84:57–80.
  • Kikuno, R., Nagase T., Waki M., and Ohara O.. 2002. HUGE: a database for human large proteins identified in the Kazusa cDNA sequencing project. Nucleic Acids Res. 30:166–168.
  • Kim, O., Yang J., and Qiu Y.. 2002. Selective activation of small GTPase RhoA by tyrosine kinase Etk through its PH domain. J. Biol. Chem. 277:30066–30071.
  • Lamarche, N., Tapon N., Stowers L., Burbelo P. D., Aspenstrom P., Bridges T., Chant J., and Hall A.. 1996. Rac and Cdc42 induce actin polymerization and G1 cell cycle progression independently of p65PAK and the JNK/SAPK MAP kinase cascade. Cell 87:519–529.
  • Mack, C. P., Somlyo A. V., Hautmann M., Somlyo A. P., and Owens G. K.. 2001. Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization. J. Biol. Chem. 276:341–347.
  • Marinissen, M. J., Chiariello M., and Gutkind J. S.. 2001. Regulation of gene expression by the small GTPase Rho through the ERK6 (p38 gamma) MAP kinase pathway. Genes Dev. 15:535–553.
  • Melchior, F., Guan T., Yokoyama N., Nishimoto T., and Gerace L.. 1995. GTP hydrolysis by Ran occurs at the nuclear pore complex in an early step of protein import. J. Cell Biol. 131:571–581.
  • Miralles, F., Posern G., Zaromytidou A. I., and Treisman R.. 2003. Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342.
  • Morrison, D. K. 2001. KSR: a MAPK scaffold of the Ras pathway? J. Cell Sci. 114:1609–1612.
  • Moskalenko, S., Henry D. O., Rosse C., Mirey G., Camonis J. H., and White M. A.. 2002. The exocyst is a Ral effector complex. Nat. Cell Biol. 4:66–72.
  • Musacchio, A., Gibson T., Rice P., Thompson J., and Saraste M.. 1993. The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18:343–348.
  • Nobes, C. D., and Hall A.. 1999. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144:1235–1244.
  • Peck, J. W., Oberst M., Bouker K. B., Bowden E., and Burbelo P. D.. 2002. The RhoA-binding protein, Rhophilin-2, regulates actin cytoskeleton organization. J. Biol. Chem. 277:43924–43932.
  • Pitcher, J. A., Touhara K., Payne E. S., and Lefkowitz R. J.. 1995. Pleckstrin homology domain-mediated membrane association and activation of the beta-adrenergic receptor kinase requires coordinate interaction with G beta gamma subunits and lipid. J. Biol. Chem. 270:11707–11710.
  • Ponting, C. P., Phillips C., Davies K. E., and Blake D. J.. 1997. PDZ domains: targeting signalling molecules to sub-membranous sites. Bioessays 19:469–479.
  • Prober, D. A., and Edgar B. A.. 2002. Interactions between Ras1, dMyc, and dPI3K signaling in the developing Drosophila wing. Genes Dev. 16:2286–2299.
  • Sahai, E., Alberts A. S., and Treisman R.. 1998. RhoA effector mutants reveal distinct effector pathways for cytoskeletal reorganization, SRF activation and transformation. EMBO J. 17:1350–1361.
  • Schmidt, A., and Hall A.. 2002. Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16:1587–1609.
  • Schultz, J., Ponting C. P., Hofmann K., and Bork P.. 1997. SAM as a protein interaction domain involved in developmental regulation. Protein Sci. 6:249–253.
  • Sotiropoulos, A., Gineitis D., Copeland J., and Treisman R.. 1999. Signal-regulated activation of serum response factor is mediated by changes in actin dynamics. Cell 98:159–169.
  • Sugihara, K., Asano S., Tanaka K., Iwamatsu A., Okawa K., and Ohta Y.. 2002. The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat. Cell Biol. 4:73–78.
  • Sundaram, M., and Han M.. 1995. The C. elegans ksr-1 gene encodes a novel Raf-related kinase involved in Ras-mediated signal transduction. Cell 83:889–901.
  • Tapon, N., Nagata K., Lamarche N., and Hall A.. 1998. A new rac target POSH is an SH3-containing scaffold protein involved in the JNK and NF-kappaB signalling pathways. EMBO J. 17:1395–1404.
  • Therrien, M., Chang H. C., Solomon N. M., Karim F. D., Wassarman D. A., and Rubin G. M.. 1995. KSR, a novel protein kinase required for RAS signal transduction. Cell 83:879–888.
  • Therrien, M., Wong A. M., Kwan E., and Rubin G. M.. 1999. Functional analysis of CNK in RAS signaling. Proc. Natl. Acad. Sci. USA 96:13259–13263.
  • Therrien, M., Wong A. M., and Rubin G. M.. 1998. CNK, a RAF-binding multidomain protein required for RAS signaling. Cell 95:343–353.
  • Tominaga, T., Sahai E., Chardin P., McCormick F., Courtneidge S. A., and Alberts A. S.. 2000. Diaphanous-related formins bridge Rho GTPase and Src tyrosine kinase signaling. Mol. Cell 5:13–25.
  • Treisman, R., Alberts A. S., and Sahai E.. 1998. Regulation of SRF activity by Rho family GTPases. Cold Spring Harb. Symp. Quant. Biol. 63:643–651.
  • Uehata, M., Ishizaki T., Satoh H., Ono T., Kawahara T., Morishita T., Tamakawa H., Yamagami K., Inui J., Maekawa M., and Narumiya S.. 1997. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389:990–994.
  • Van Aelst, L., and D'Souza-Schorey C.. 1997. Rho GTPases and signaling networks. Genes Dev. 11:2295–2322.
  • Vetter, I. R., Nowak C., Nishimoto T., Kuhlmann J., and Wittinghofer A.. 1999. Structure of a Ran-binding domain complexed with Ran bound to a GTP analogue: implications for nuclear transport. Nature 398:39–46.
  • Watanabe, N., Kato T., Fujita A., Ishizaki T., and Narumiya S.. 1999. Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat. Cell Biol. 1:136–143.
  • Yao, I., Hata Y., Ide N., Hirao K., Deguchi M., Nishioka H., Mizoguchi A., and Takai Y.. 1999. MAGUIN, a novel neuronal membrane-associated guanylate kinase-interacting protein. J. Biol. Chem. 274:11889–11896.
  • Yao, I., Ohtsuka T., Kawabe H., Matsuura Y., Takai Y., and Hata Y.. 2000. Association of membrane-associated guanylate kinase-interacting protein-1 with Raf-1. Biochem. Biophys. Res. Commun. 270:538–542.
  • Zohar, M., Teramoto H., Katz B. Z., Yamada K. M., and Gutkind J. S.. 1998. Effector domain mutants of Rho dissociate cytoskeletal changes from nuclear signaling and cellular transformation. Oncogene. 17:991–998.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.